MATRIX ALGEBRA REVIEW
(

PRELIMINARIES
A matrix isaway of organizing information.

It isarectangular array of elements arranged in rows and columns. For example, the following matrix
A has m rows and n columns.

&y &, &3 . Ay
& Gy Ay .. Ay,
A=la, @, a5 - &,

a'ml am2 am3 T amn

All elements can be identified by atypica element &, where i=1,2,...,m denotes rows and j=1,2,...,n
denotes columns.

A matrix is of order (or dimension) m by n (also denoted as (m x n)).
A matrix that has a single column is called a column vector.
A matrix that has asingle row is called arow vector.

TRANSPOSE
Thetranspose of amatrix or vector is formed by interchanging the rows and the columns. A matrix of
order (m x n) becomes of order (n x m) when transposed.

For example, if a (2 x 3) matrix is defined by

A:[au a, als]

& Gy 8y

Then the transpose of A, denoted by A’, isnow (3 X 2)
all aZl

A= A,
a13 a23

[} (A’)’ = A

e (kA =KA", wherek isascalar.



SYMMETRIC M ATRIX
When A = A, the matrix is called symmetric. That is, a symmetric matrix is a square matrix, in that it
has the same number of rows as it has columns, and the off-diagonal elements are symmetric (i.e.

a;=a; foraliand j).

For example,
4 5 -3
A=|5 7 2
-3 2 10

A special caseisthe identity matrix, which has 1's on the diagona positions and O’'s on the off-
diagonal positions.

01 - 0
=, .

The identity matrix is a diagonal matrix, which can be denoted by diag(a,,a,,...,a,) , where a, isthe
i element on the diagonal position and zeros occur elsewhere. So, we can write the identity matrix as

| =diag(11,...]) .

ADDITION AND SUBTRACTION

Matrices can be added and subtracted as long as they are of the same dimension. The addition of
matrix A and matrix B is the addition of the corresponding elementsof A and B. So, C=A+B
impliesthat ¢; =a; +b, foralliandj.

ofs 4

For example, if
2 —
A=
[6 10]
Then

2 3
C=
n
e AXrB=BX A

e (A+B)+C=A+(B+C)
e (AtB/=A+B



M ULTIPLICATION
If kisascalar and A isamatrix, then the product of k times A is called scalar multiplication. The
product isk times each element of A. That is, if B=KA, then b, =kg; for al i andj.

In the case of multiplying two matrices, such as C = AB, where neither A nor B are scalars, it must be
the case that

the number of columns of A =the number of rows of B

So, if A isof dimension (m x p) and B of dimension (p x n), then the product, C, will be of order (m x
n) whose ij'" element is defined as

p
G = Zaikbkj
k=1

In words, the ij™" element of the product matrix is found by multiplying the elements of the it row of A,
the first matrix, by the corresponding elements of the j column of B, the second matrix, and summing
the resulting product. For thisto hold, the number of columns in the first matrix must equal the
number of rows in the second.

For example,

(6 8][3 -8 1
F=AD=
-2 4]9 2 5

[ 6%3+8*9  6*(-8)+8*2  6*1+8*5
|(-2)*3+4%9 (-2)*(-8)+4*2 (-2)*1+4*5

(90 -32 46
30 24 18

e A (mx 1) column vector multiplied by a (1 x n) row vector becomes an (m x n) matrix.
e A (1xm)row vector multiplied by a (m x 1) column vector becomes a scalar.
e Ingenerd, AB# BA.

But, kA= Ak if kisascalar and A is a matrix.
And, Al =1A if A isamatrix and | isthe identity matrix and conformable for multiplication.

The product of arow vector and a column vector of the same dimension is called the inner product
(also called the dot product), its value is the sum of products of the components of the vectors. For
example, if jisa (T x 1) vector with elements 1, then the inner product, j’j, is equal to a constant T.

Note: two vectors are orthogonal if their inner product is zero.

e AB+C)=AB+AC.
e (A+B)C=AC+BC.



e ABC)=(AB)C.
A matrix with e ements al zero is caled a null matrix.

e (AB)=BA.
e (ABC)Y=CBA.

TRACE OF A SQUARE M ATRIX
Thetrace of a square matrix A, denoted by tr(A), is defined to be the sum of its diagona elements.

tr(A)=a,+a,,+a,+..+a,,

o tr(A=A,ifAisasclar.

e tr(A)=tr(A), because A is square.

o tr(kA=k-tr(A), wherek isascadar.

e tr(l,)=n, thetrace of an identity matrix is its dimension.
e tr(A£B)=tr(A=tr(B).

e tr(AB)=tr(BA).

o tr(AA)=tr(A'A = iiaﬁ .

i=1 j=1

DETERMINANT OF A SQUARE M ATRIX
The determinant of a square matrix A, denoted by det(A) or W , Isauniquely defined scalar number

associated with the matrix.

1) for asingle element matrix (ascalar, A=a ), det(A) = a,;.

i) inthe (2 x 2) case,
A:[an alz}
&
the determinant is defined to be the difference of two terms as follows,

|A4 =ay,8y, —a;,a,,

which is obtained by multiplying the two elements in the principal diagonal of A and then subtracting
the product of the two off-diagonal elements.

i) inthe (3 x 3) case,



a; 8, a

A= a, d, ay
a3 83 Qg
a22 a23 aZl a23 a21 a22
=3 -3 +a,
A B P T e VO T e R

iv) for general cases, we start first by defining the minor of element &; asthe determinant of the
submatrix of A that arises when the i row and the j" column are deleted and is usually denoted as
|A,j|. The cofactor of the element a; is ¢; = (-1)**! A,j|. Finaly, the determinant of an n x n matrix

]
can be defined as

|A= iaﬂcij for any rowi=12,...,n.
j=1

=Y a,c; forany column j=12,...,n.
i=1

|AT=[A
a kc |ka c a ¢
b kd |kb d b d

o |kA=K"|A, for scalar k and n x n matrix A.
e If any row (or column) of a matrix is amultiple of any other row (or column) then the determinant

is zero, e.g.

k
& kP Y=k@b-ab)=0
b k b b

e If Aisadiagonal matrix of order n, then |A=a,a,, -a

nn

e If A and B are square matrices of the same order, then |AB|=|A|B|.
e Ingenerd, |A+B|=|A+|B|

RANK OF A M ATRIX AND L INEAR D EPENDENCY

Rank and linear dependency are key concepts for econometrics. The rank of any (m x n) matrix can be
defined (i.e., the matrix does not need to be square, as was the case for the determinant and trace) and
isinherently linked to the invertibility of the matrix.

The rank of amatrix A is egual to the dimension of the largest square submatrix of A that has a
nonzero determinant. A matrix is said to be of rank r if and only if it has at |east one submatrix of
order r with a nonzero determinant but has no submatrices of order greater than r with nonzero
determinants.

For example, the matrix



4 5 2 14
3 9 6 21
A=
8 10 7 28
1 2 9 5
4 5 2
has rank 3 because |[A=0,but 3 9 6=63=0
8 10 7

That is, the largest submatrix of A whose determinant is not zero is of order 3.

The concept of rank also can be viewed in terms of linear dependency. A set of vectorsis said to be
linearly dependent if there is a nontrivial combination (i.e., a least one coefficient in the combination
must be nonzero) of the vectors that is equal to the zero vector. More precisely, denote n columns of
the matrix A as a,,a,,...,a,. Thisset of these vectorsislinearly dependent if and only if there exists

aset of scaars {c,c,,...,C.}, a least one of which is not zero, such that ca, +C,a, +...+C,a, =0.

In the above example, the columns of the matrix A are linearly dependent because,

4 5 2 14
3 6 21
+2 + - =0
8 10 7 28
1 2 9 5

If aset of vectorsis not linearly dependent, then it is linearly independent. Also, any subset of a
linearly independent set of vectors is linearly independent.

In the above example, the first three columns of A are linearly independent, as are the first two
columns of A. That is, we cannot find a set of scalars (with at least one nonzero) such that the linear
combination of scalars and columns equals the zero vector.

The connection between linear dependency and the rank of a matrix isasfollows: therank of a
matrix A may be defined as the maximum number of linearly independent columns or rows of A.

In other words, the maximum number of linearly independent columns is equal to the maximum
number of linearly independent rows, each being equal to the rank of the matrix. If the maximum
number of linearly independent columns (or rows) is equal to the number of columns, then the matrix
has full column rank. Additionaly, if the maximum number of linearly independent rows (or
columns) is equal to the number of rows, then the matrix has full row rank. When a square matrix A
does not have full column/row rank, then its determinant is zero and the matrix is said to be singular.
When a sguare matrix A has full row/column rank, its determinant is not zero, and the matrix is said to
be nonsingular (and therefore invertible).

e Full rank (nonsingular matrix) < |A|#20 < Aisinvertible.



Furthermore, the maximum number of linearly independent (m x 1) vectorsism. For example,
consider the following set of two linearly independent vectors,

A

If there is a third vector,

N

where b, and b, can be any numbers, then the three unknown scalars c,,c,, and c, can always be
found by solving the following set of equations,

1 3 b, 0
c| _|+¢,| |+c, =| 1.

2 4 b, 0
In other words, the addition of any third vector will result in a (2 x 3) matrix that is not of full rank and
therefore not invertible.

Generally speaking, thisis because any set of m linearly independent (m x 1) vectors are said to span
m-dimensional space. This means, by definition, that any (m x 1) vector can be represented as alinear
combination of the m vectors that span the space. The set of m vectors therefore is also said to form a
basis for m-dimensional space.

rank(l,)=n

rank(kA =rank(A), where k is a nonzero constant

e rank(A)=rank(A)

e If Alisan (m x n) matrix, then rank(A) <min{m,n} .

e If A and B are matrices, then rank(AB) < min{rank(A),rank(B)} .

e If Alisan (nxn) matrix, then rank(A)=n if and only if A isnonsingular; rank(A) <n if and
only if A issingular.

There are operations on the rows/columns of a matrix that leave its rank unchanged:

e Multiplication of arow/column of a matrix by a nonzero constant.
e Addition of ascalar multiple of one row/column to another row/column.
e |Interchanging two rows/columns.

INVERSE OF A M ATRIX
The inverse of a nonsingular (n x n) matrix A is another (n x n) matrix, denoted by A%, that satisfies
the following equaities. A*A= AA™ = | . Theinverse of anonsingular (n x n) matrix is unique.

The inverse of amatrix A in terms of its elements can be obtained from the following formula:
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<

A

Note that C' is the transpose of the matrix of cofactors of A as defined in the section on determinants.
C isaso cdled the adjoint of A.

e Al-= whereC’ = [Cij ], and C, = (_1)”]

Al

For example, let

)

det(A) = -2 and the cofactorsare ¢, =4, c,, =1,¢,,=-3,C,, =—2. S0, theinverse is calculated as,

A—lzi[ 4 —3] :[—2 1 }

-2[-2 1 15 -05

o |1=|

° (A—l)—l — A

o (A)T=(AYY

e If Aisnonsingular, then A™ is nonsingular.

e If A and B arenonsingular, then (AB) ' =B 'A™".

SOLUTIONSFOR SYSTEMSOF SIMULTANEOUSL INEAR EQUATIONS
Consider the following system of linear equations. Ax=bwhere A isa(m x n) matrix of known
coefficients, x isa (n x 1) vector of unknown variables, and b isa (m x 1) vector of known coefficients.

We want to find the conditions under which: 1) the system has no solution, 2) the system has infinitely
many solutions, 3) the system has a unique solution. Define the matrix Alb as the augmented matrix of
A. Thisisjust the matrix A with the b vector attached on the end. The dimension of Alb is therefore
(m x (n+1)).

Succinctly put, the conditions for the three types of solutions are as follows. (Note: there are numerous
ways of characterizing the solutions, but we will stick to the simplest representation):

1. The system has no solution if rank(A|b) > rank(A).
2. The system has infinitely many solutions if rank(A|b) = rank(A) and rank(A) < n.
3. The system has a unique solution if rank(A|b) = rank(A) and rank(A) = n.

Let’slook at examples for each case.
Case 1. No Solution

Intuition: if rank(A|b) > rank(A), then b is not in the space spanned by A; so b cannot be represented as
alinear combination of A; so thereis no x that solves (Ax = b); so there is no solution.




Consider the system,

2 3][x] [8 o 2x, +3x,=8
4 6][x,| |9 4%, +6x, =9

23 0 sngular
=0 =
4 6 e
(2 3
rank =1
_4 6]
(2 3 8
rank =2 = rank(A|b)>rank(A)
4 6 9

If we attempt to solve for x; in the first equation and substitute the result into the second equation, the
resulting equality is 16= 9, which is a contradiction.

Case 2: Infinitely Many Solutions

Intuition: if rank(Alb) = rank(A), then b isin the space spanned by A; so b can be represented as a
linear combination of A; so there exists an x that solves (Ax = b). But because rank(A) < n, there are
more variables than equations. This gives us “free variables’ and therefore multiple solutions, one
associated with each choice of values for the free variables.

Consider the following system of equations

2 4 8 2% +4x, =38

3 6[)):1}: 12 or 3x +6x,=12
4 8|-* |16 4x +8x, =16
(2 4
rank|3 6|=1
|4 8
(2 4 8
rank|3 6 12|=1
|4 8 16

In this case, rank(A|b) = rank(A), but the rank is less than the number of unknown variables (n). Also
notice that each equation is just some linear combination of the other two, so we really have only one
equation and two unknowns. There are infinitely many solutions that can solve this system, including
(40,21, (02



Case 3:_Unique Solution

Intuition: if rank(Alb) = rank(A), then b isin the space spanned by A; so b can be represented as a
linear combination of A; so there exists an x that solves (Ax = b). Because rank(A) = n, there are equal
numbers of variables and equations. This gives us no “free variables’ and therefore a single solution.

Consider the following system,

2 3 7 2% +3X, =7
3 s[xl}: 11 or  3x +5x, =11
X
4 6|-% |14 4x, +6x, =14
[2 3
rank|3 5|=2
|4 6
(2 3 7 2 3 7 )
rank|3 5 11|=2 because (3 5 11=0 and ‘3 jzlio
|4 6 14 4 6 1

So, rank(A|b) =rank(A) =2=n<m. Thereis full column rank, and the system can be uniquely
solved. In fact, any two independent equations can be used to solve for the x’s. The solution is
X, =2, X, =1L

In econometrics, we often deal with square matrices, so the following is important for us.
e If Aisasquarematrix (m = n) and nonsingular, then x= A isthe unique solution.
KRONECKER PRODUCT

Let A bean (M x N) matrix and B be a (K x L) matrix. Then the Kronecker product (or direct
product) of A and B, written as A® B, isdefined as the (MK x NL) matrix

ailB alZB aiNB
a21B azzB aZNB

C=A®B=
aMlB aMZB aMNB
For example if
1 3 2 20
A= and B=
2 0 1 0 3
Their Kronecker product is
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1[220}3{220]
10 3 1 0 3
A®B_220 2 20
1 0 3 1 0 3
2 206 60
|1 033009
14 4 0000
2 06 000
Note that
26 2600
4 0 4000
B®A=
1300309
2 00060

e A®B#B®A,

e (A®B)=A®PB

e (A®B)(C®D)=AC®BD
e (A®B)'=A'®B™

e A®(B+C)=A®B+A®C

VECTORAND M ATRIX DIFFERENTIATION
In least squares and maximum likelihood estimation, we need to take derivatives of the objective
function with respect to a vector of parameters.

Let afunction relating y, ascalar, to a set of variables x,X,,..., X, be y=f(x,X,,...,X,) or
y = f(x), wherex isan (n x 1) column vector. (Notice that x isin bold to indicate a vector.)

The gradient of y is the derivatives of y with respect to each element of x as follows

Yo
o _| Vs
ox :

ay
X

n

Notice the matrix of derivatives of y is a column vector becausey is differentiated with respect to x, an
(n x 1) column vector.

The same operations can be extended to derivatives of an (m x n) matrix X, such as

11



” OXq1 a%xlz o %Xm
ﬂ — %le a%Xzz o %m

oX .
a%Xrnl a%me o a%Xn'n
Notice in this case, the matrix of derivativesisan (m x n) matrix (the same dimension as X).

If, instead, y isan (m x 1) column vector of y.,i =12,...,m and x isa(n x 1) column vector of
X;, j =12,...,n, then the first derivatives of y with respect to x can be represented as an (m x n)
matrix, called the Jacobian matrix of y with respect to x’:

Vo o o
ay:[al]: W Ve WA

ox” | ox : : .

J
Aside: when differentiating vectors and matrices, note the dimensions of the independent variable (y)
and the dependent variables (x). These will determine if the differentiation will entail the transpose of
amatrix. Inthe above example, the first column of the resulting (m x n) matrix is the derivative of the
vector of y,,i =1,2,...,m with respect to the first x,. The second column is the derivative with respect

to x, and so on. Also note that the first row isthe derivative of 'y, with respect to the vector x” (a (1 x
n) row vector). Therefore because x is a column vector, we need to transpose it to represent the
derivative of the m observations of y (down the column) with respect to the n unknown x variables
(across the row). They vector does not need to be transposed because y is represented aong the
column of the resulting Jacobian matrix.

If we turn back to the scalar case of y, the second derivatives of y with respect to the column vector x
are defined as follows.

[ 2%y 9%y LY ]
o 9%y 0%,

2 2 azy 2%y . azy

9%y :[ o7y :l_ o Jowg? x%,

y . .
oxox : ‘. :
2%y 2%y Ly
0X,0% OX 9%, axn2

This matrix is symmetric and is called the Hessian matrix of y.

X, 0X;

Note that the Hessian matrix is just the second derivative of the gradient with respect to the x vector.
We need to transpose the x vector when taking the second derivative because for the Hessian, we are
taking the derivative of the gradient (a vector) with respect to each x variable. So, the first columnis

the gradient differentiated with respect to x,, and the second column is the gradient differentiated with
respect to x, and so on. So, we need to differentiate the gradient with respect to X’ to order these
derivatives across the rows of the resulting matrix.

12



Based on the previous definitions, the rules of derivatives in matrix notation can be established for
reference. Consider the following function z=c'x, wherecisa(n x 1) vector and does not depend on
X, and x isan (n x 1) vector, and z isa scaar. Then

ox  Ox

Tou| |G
9z _acx || _|Ca

= : =C
a%xn Cn

If z=C%, where Cisan (nxn) matrix and x is an (n x 1) vector, then

07" dxC
= = (Cl

.. -C
ox ox < Cn)

where ¢, isthe i column (remember c is a vector) of C.

The following formula for the quadratic form z=x'Ax isaso useful (for any (n x n) matrix A),

% _ OX'AX
X Ox

= A'X+ Ax=(A"+ A)x. The proof of this result is given in the appendix.

If A isasymmetric matrix (A = A’), then

OX'AX

2AX
ox

For the second derivatives for any square matrix A,

0% (X’AX)

— = A+ A’
Ox0X

and if A = A’ (if A issymmetric), then

0% (X’AX)
oxox’

=2A

Some other rules (x is a scalar, unless noted otherwise):

ox'By
oB

otr(A)
oA

=xy’, wherex and y are (n x 1) column vectors and B is an (n x n) matrix

13



IA |t
* oA AR

8In|A{_ L
" oA W)

0AB 0B J0A
e AT HEB
ox A{&)x] (ax)

° aA_l — A—l % A—l
X oX

Since this review was by no means complete, if you want to learn more about matrix agebra, the
following are good references:
Anton, Howard (1994), Elementary Linear Algebra, 7" edition, New York: John Wiley & Sons.
The math behind it all. Check out chapters 1, 2, 5.6.
Judge, George G., R. Carter Hill, William E. Griffiths, Helmut Lutkepohl, and Tsoung-Chao Lee
(1988), Introduction to the Theory and Practice of Econometrics, 2" Edition, New Y ork: John
Wiley & Sons, Appendix A.
These notes follow the Appendix fairly closaly.
Leon, Steven J. (1994), Linear Algebra with Applications, 4™ edition, New Jersey: Prentice Hall.

Simon, Carl P. and Lawrence Blume (1994), Mathematics for Economists New York: W.W. Norton.

Look at chapters6—9, & 26.
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APPENDIX

Clam: %z = IXAX = A'X+ Ax=(A"+ A)X
ox ox

Proof:

Write out the quadratic form for an (n x n) matrix A,

A, &, - A, X

a a cee a2 X
’ 21 22 n 2
z=XAX=[x X, x0T
anl a'n2 a'nn Xn
X
- ]
=anX F a0 A%, BpX X T T X, X X, et A X, ]
X,

= [Xl(allxl+ aZlXZ +"'+anlxn)+ Xz(a12)<1 +a22X2 +"'+an2xn)+'“+ Xn(alnxl+ aZnXZ +"'+ aT1nXﬂ)]

(B B B X (B +800) XX, + (Byg +83) XX + (B 81X X+ (@, + B )X X,
+ (a23 + a32)X2X3 + (a24 + a‘42))(2)(4 Tt (aZn + anZ)XZ Xn Tt (an,n—l + an—l,n )Xn Xn—l

Now differentiate this with respect to the vector x,

2a11X1+(a21+ a12)X2 +(a31+a13)x3 ++(anl+a1n)xn
%: (a12 +a21)xl+2a22x2 +(a32 +a23)x3 ++(an2 +a2n)xn
ox :
(@, + )X +(ag, +a,.)%, + (8, +3,5) % +...+ 28, X,

But this can be rewritten as,

2311 (aZl + a12) (a31 + a13) (a‘nl + a‘.l.n) Xy
E _ (a:I.Z + aZl) 2azz (asz + azs) (anz + a2n) Xz
ox : : : E : :
(a:l.n + a'nl) (aZn + %) (a3n + an3) 2a,, X,

15



or

0z ,
—=A"+A
ox A"+ A)x

If A issymmetric, then a; =a; for al i,j,so

9z _

2A
~ X

Thisaso holdsif n=n +1, o, by induction, the result holds for any (n x n) matrix.
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Lecture 11: Eigenvalues and Eigenvectors

Definition 11.1. Let A be a square matrix (or linear transformation). A number A is
called an eigenvalue of A if there exists a non-zero vector « such that

At =\ . (1)

In the above definition, the vector u is called an eigenvector associated with this eigenvalue
A. The set of all eigenvectors associated with A forms a subspace, and is called the eigenspace
associated with \. Geometrically, if we view any n X n matrix A as a linear transformation
T. Then the fact that @ is an eigenvector associated with an eigenvalue \ means « is an
invariant direction under 7. In other words, the linear transformation 7" does not change
the direction of « : @ and T either have the same direction (A > 0) or opposite direction
(A < 0). The eigenvalue is the factor of contraction (|A| < 1) or extension (|A[ > 1).

Remarks. (1) @ # 0 is crucial, since @ = 0 always satisfies Equ (1). (2) If @ is an
eigenvector for A, then so is cu for any constant c. (3) Geometrically, in 3D, eigenvectors of
A are directions that are unchanged under linear transformation A.

We observe from Equ (1) that A is an eigenvalue iff Equ (1) has a non-trivial solution.
Since Equ (1) can be written as

(A= X))@= At — \i =0, (2)

it follows A is an eigenvalue iff Equ (2) has a non-trivial solution. By the inverse matrix
theorem, Equ (2) has a non-trivial solution iff

det (A — \I) = 0. (3)

We conclude that A is an eigenvalue iff Equ (3) holds. We call Equ (3) "Characteristic
Equation" of A. The eigenspace, the subspace of all eigenvectors associated with A, is

eigenspace = Null (A — \I).
¢ Finding eigenvalues and all independent eigenvectors:

Step 1. Solve Characteristic Equ (3) for .
Step 2. For each ), find a basis for the eigenspace Null (A — AI) (i.e., solution set of Equ

(2))-

Example 11.1. Find all eigenvalues and their eigenspace for

Solution:



The characteristic equation is

det (A—A)=(3—=X)(=)) — (=2) =0,
M —3)4+2=0,
A=1)(A=2)=0.

We find eigenvalues
)\1 = 1, )\2 == 2

We next find eigenvectors associated with each eigenvalue. For A\; = 1,
o - 3—1 -2 X1 . 2 =2 X1
L I o e 4}

Tr1 = Ta.

or

The parametric vector form of solution set for (A — \I)Z =0 :

- E+l)
basis of Null (A — I : m .

This is only (linearly independent) eigenvector for A\; = 1.
The last step can be done slightly differently as follows. From solutions (for (A — A1) ¥ =
0)
Ty = T,

we know there is only one free variable x5. Therefore, there is only one vector in any basis. To
find it, we take x5 to be any nonzero number, for instance, o = 1, and compute x; = x5 = 1.

We obtain
. - T 1
wenm= [ =[]
For Ay = 2, we find

0= (A—XD)7 = {312 IZ} Bj = E :;] Bj

T = 2,172.

or

To find a basis, we take x9 = 1. Then z; = 2, and a pair of eigenvalue and eigenvector



Example 11.2. Given that 2 is an eigenvalue for

4 -1 6
A=12 1 6
2 -1 8
Find a basis of its eigenspace.
Solution:
4-2 -1 6 2 -1 6 2 —1 6
A—21 = 2 1-2 6 =12 -1 6/ —10 0 O
2 -1 8-2 2 -1 6 0 0 0
Therefore, (A — 2I) # = 0 becomes
2117 — o9 + 623 = 0, or x9 = 2x1 + 6x3, (4)

where we select x; and x3 as free variables only to avoid fractions. Solution set in parametric
form is

T T 1 0
= |x2| = |201 +623| =21 |2] + 23 |6
T3 T3 0 1
A basis for the eigenspace:
1 0
;= |2| and Uy = |6
0 1

Another way of finding a basis for Null (A — AI) = Null (A — 2I) may be a little easier.
From Equ (4), we know that x; an x3 are free variables. Choosing (x;, x3) = (1,0) and
(0,1), respectively, we find

1
l’1:1,1’3:0:>l’2:2:>ﬁ1: 2
0
0
l’1:0,1’3:1:>l’2:6:>ﬁ2: 6
1
Example 11.3. Find eigenvalues: (a)
3 -1 6 33— —1 6
A=10 0 6|, A—xi=| 0 —x 6
0 0 2 0 0 2—2X

det (A — M) = (3—X) (=\) (2= X) =0

3



The eigenvalues are 3, 0, 2, exactly the diagonal elements. (b)

4—-X 0 0
B -\ = 2 1-Xx 0

4
B=|2
1 1 0 4-A

o = O
- O O

det (B— M) =(4—X\)>(1—=X)=0.

The eigenvalues are 4, 1, 4 (4 is a double root), exactly the diagonal elements.

Theorem 11.1. (1) The eigenvalues of a triangle matrix are its diagonal elements.

(2) Eigenvectors for different eigenvalues are linearly independent. More precisely, sup-
pose that A1, Ao, ..., A, are p different eigenvalues of a matrix A. Then, the set consisting
of

a basis of Null (A — A\I), a basis of Null (A — A2I), ..., a basis of Null (A — \,1)

is linearly independent.
Proof. (2) For simplicity, we assume p = 2 : A\; # ), are two different eigenvalues. Suppose
that ; is an eigenvector of A\; and i, is an eigenvector of Ay To show independence, we need
to show that the only solution to

1‘1’171 + 1‘2’172 = 6

is x1 = 29 = 0. Indeed, if x1 # 0, then

We now apply A to the above equation. It leads to

- Z2 ., - To,
Au1 = —AUQ - )\1'&1 = —>\2U2. (6)
x I

Equ (5) and Equ (6) are contradictory to each other: by Equ (5),

Equ (5) — )\1’1_[1 = ﬁ)\lﬁg
I

Equ (6) — )\1'1_[1 = ﬁ)\gﬁg,
€y

or

Zo, - Zo,
—>\1UQ = )\1’&1 = —)\QUQ.
x x

Therefor \; = Ay, a contradiction to the assumption that they are different eigenvalues.

e Characteristic Polynomials



We know that the key to find eigenvalues and eigenvectors is to solve the Characteristic
Equation (3)
det (A—\)=0.

For 2 X 2 matrix,

So
det (A= A)=(a—A)(d—X) —bc
=M+ (—a—d) X+ (ad — bc)

is a quadratic function (i.e., a polynomial of degree 2). In general, for any n x n matrix A,

a;; — A Q12 tet Q1n
21 Qge — A - -- Q2
A— M = "
an1 an2 e Apn — >\

We may expand the determinant along the first row to get

age — A - Q2p,
det (A — AI) = (a;; — ) det + ..

an2 ann_)\

By induction, we see that det (A — AI) is a polynomial of degree n.We called this polynomial
the characteristic polynomial of A. Consequently, there are total of n (the number of rows
in the matrix A) eigenvalues (real or complex, after taking account for multiplicity). Finding
roots for higher order polynomials may be very challenging.

Example 11.4. Find all eigenvalues for

5 =2 6 -1
0 3 -8 0
A= 0 0 5 4
0 O 1 1
Solution:
5—A =2 6 -1

det(A=A)=(B—-Ndet| 0 55—\ 4

5-A 4
11—\

=BG-=-NB=XN[b=-AN(1=X—-4]=0.

= (5— ) (3 — \)det




There are 4 roots:

5-A)=0=X\=5
B3-=AN)=0=X=3

5G-N(1-XN)—-4=0 =N —-6A+1=0
+ /36 — 4

We know that we can computer determinants using elementary row operations. One may
ask: Can we use elementary row operations to find eigenvalues? More specifically, we have

Question: Suppose that B is obtained from A by elementary row operations. Do A and
B has the same eigenvalues? (Ans: No)

Example 11.5.
o 1 1 R2+R1—>R2 1 1 o
Aefoof -

A has eigenvalues 1 and 2. For B, the characteristic equation is

3—A
=(1-ANB=A)—1=X\—4)\+2.

det (B — \I) = {1IA 1 }

The eigenvalues are

‘o 4++/16 —8 :41\/§:2i\/§.
2 2

This example show that row operation may completely change eigenvalues.

Definition 11.2. Two n x n matrices A and B are called similar, and is denoted as
A ~ B, if there exists an invertible matrix P such that A = PBP™!.

Theorem 11.2. If A and B are similar, then they have exact the same characteristic
polynomial and consequently the same eigenvalues.

Indeed, if A= PBP~! then P(B — \)P~! = PBP~! — APIP~! = (A — \I). There-
fore,

det (A — AI) = det (P (B — M) P7') =det (P)det (B — AI)det (P~') =det (B — AI).

Example 11.6. Find eigenvalues of A if

5 -2 6 -1
0 3 -8 0
A~B=1y ¢ 5 4
0 0 0 4

Solution: Eigenvalues of B are A = 5,3,5,4. These are also the eigenvalues of A.



Caution: If A ~ B, and if )\, is an eigenvalue for A and B, then an corresponding
eigenvector for A may not be an eigenvector for B. In other words, two similar matrices A
and B have the same eigenvalues but different eigenvectors.

Example 11.7. Though row operation alone will not preserve eigenvalues, a pair of
row and column operation do maintain similarity. We first observe that if P is a type 1
elementary matrix (row replacement) ,

P 1 0 aR1+Ro—R2 1 0
pu— b
a 1 0 1|’

then its inverse P! is a type 1 (column) elementary matrix obtained from the identity
matrix by an elementary column operation that is of the same kind with "opposite sign" to
the previous row operation, i.e.,

-1 1 0 C1—aCy—C1q 10
b= {—a 1 = o1

We call the column operation
Cl — CLCQ — Cl

is "inverse" to the row operation

Ry +aRy — Rs.

Now we perform a row operation on A followed immediately by the column operation
inverse to the row operation

0 2 13

CI—CE)HCI 0 1
-2 3

e {1 1} Ry+Ra— Ry {1 1} (left multiply by P)
] = B (right multiply by P'.)

We can verify that A and B are similar through P (with a = 1)
o ro]fr 1)1 o
PAP— = { 1o 2| [-1 1

S R

Now, A\; = 1 is an eigenvalue. Then

—

Y

a3
SRR

—= U= {0] is an eigenvector for A.



But
o=
|

S I

—= U= B] is NOT an eigenvector for B.
In fact,
L [-1 1] [1] o
w-ne= 5 o [ -[o]
So, ¥ = {_11} is an eigenvector for B.

This example shows that
1. Row operation alone will not preserve eigenvalues.

2. Two similar matrices share the same characteristics polynomial and same eigenvalues.
But they have different eigenvectors.

e Homework #11.

1. Find eigenvalues if

—1 2 8 -1
0 2 10 0
(@) A~ 1o o 1 4
(0 0 0 3
[—1 2 8 —1
1 210 0
)Y B~10 01 4
0 0 0 2

2. Find eigenvalues and a basis of each eigenspace.

(a) A:{_A‘g ‘92}.

7 4 6
(b) B=|-3 —1 -8
0 0 1



3. Find a basis of the eigenspace associated with eigenvalue A = 1 for

12 4 -1
1 2 -3 0
A= 00 1 2
00 0 1

4. Determine true or false. Reason your answers.

(a) If AZ = A%, then X is an eigenvalue of A.
(

(c
(d) If A and B have the same eigenvalues, then they have the same characteristic
polynomial.

(e) If det A = det B, then A is similar to B.

)

b) A is invertible iff 0 is not an eigenvalue.
) If A~ B, then A and B has the same eigenvalues and eigenspaces.
)



Section 1.6

1.6 Vector Calculus 1 - Differentiation

Calculus involving vectors is discussed in this section, rather intuitively at first and more
formally toward the end of this section.

1.6.1 The Ordinary Calculus

Consider a scalar-valued function of a scalar, for example the time-dependent density
of a material p = p(t). The calculus of scalar valued functions of scalars is just the

ordinary calculus. Some of the important concepts of the ordinary calculus are reviewed
in Appendix B to this Chapter, §1.B.2.

1.6.2 Vector-valued Functions of a scalar

Consider a vector-valued function of a scalar, for example the time-dependent
displacement of a particle u =u(t). In this case, the derivative is defined in the usual

way,
du . u(t+ At) —u(t)

— =1lim
dt At—0 At

which turns out to be simply the derivative of the coefficients!,

du du, du, du,  duy;

=—e +——e,+——e, =—"¢,
dt dt dt dt dt

Partial derivatives can also be defined in the usual way. For example, if u is a function of
the coordinates, u(X,,X,,X;), then

ou u(X, +AX;, X,, X;) —u(X;, X,,X;)

— =lim
0
X, M AX

1

Differentials of vectors are also defined in the usual way, so that when u,, U,, U, undergo
increments du, = Au,, du, = Au,, du, = Au,, the differential of u is

du =du,e, +du,e, +du,e,

and the differential and actual increment Au approach one another as
Au;, Au,, Au; = 0.

! assuming that the base vectors do not depend on t
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The derivative of a vector can be interpreted geometrically as shown in Fig. 1.6.1: Au is
the increment in u consequent upon an increment At int. Ast changes, the end-point of
the vector u(t) traces out the dotted curve I' shown — it is clear that as At —> 0, Au

approaches the tangent to I", so that du/dt is tangential to I'. The unit vector tangent to

the curve is denoted by 7:

_ du/dt

_ du/dt 16.1
7 /] (161

(b)

Figure 1.6.1: a space curve; (a) the tangent vector, (b) increment in arc length

Let s be a measure of the length of the curve I' , measured from some fixed point on T'.
Let As be the increment in arc-length corresponding to increments in the coordinates,

Au = [Au1 , Au,, Au, ]T, Fig. 1.6.1b. Then, from the ordinary calculus (see Appendix

1.B),

so that

But

so that

Solid Mechanics Part I11

(ds)” =(du, )* +(du, | +(du, )

ds du, ? du, ? du, ’
dt dt dt dt

du _du, ~ du, du,

dt dt a2 g @
du| ds
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Thus the unit vector tangent to the curve can be written as

T du/dt _d_u
ds/dt ds

(1.6.3)

If u is interpreted as the position vector of a particle and t is interpreted as time, then
v =du/dt is the velocity vector of the particle as it moves with speed ds/dt along I".

Example (of particle motion)

A particle moves along a curve whose parametric equations are X, = 2t>, x, =t> —4t,
X, =3t —5 where t is time. Find the component of the velocity at time t =1 in the

direction a =e, —3e, +2e;.
Solution

The velocity is

v I G hte 4 (2 —ath, + (3t -5k,
dt dt
=4e, —2e, +3e, att=1
The component in the given direction is v-a, where a is a unit vector in the direction of
a, giving 814/7.

Curvature

The scalar curvature x(S) of a space curve is defined to be the magnitude of the rate of
change of the unit tangent vector:

d’u

ds?

d_‘r
ds

x(s) =

(1.6.4)

Note that At is in a direction perpendicular to 7, Fig. 1.6.2. In fact, this can be proved
as follows: since T is a unit vector, -t is a constant (=1), and so d (1,' . 1,')/ ds =0, but
also,

d dt
—(r-1)=27 —
ds(T T) T ds

and so T and dt/ds are perpendicular. The unit vector defined in this way is called the
principal normal vector:
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v=—— (1.6.5)

Figure 1.6.2: the curvature

This can be seen geometrically in Fig. 1.6.2: from Eqn. 1.6.5, At is a vector of
magnitude xAS in the direction of the vector normal to T. The radius of curvature R is
defined as the reciprocal of the curvature; it is the radius of the circle which just touches
the curve at s, Fig. 1.6.2.

Finally, the unit vector perpendicular to both the tangent vector and the principal normal
vector is called the unit binormal vector:

b=1txv (1.6.6)

The planes defined by these vectors are shown in Fig. 1.6.3; they are called the rectifying
plane, the normal plane and the osculating plane.

v

Osculating

Normal plane plane

-

Rectifying
plane

b

Figure 1.6.3: the unit tangent, principal normal and binormal vectors and associated
planes
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Rules of Differentiation

The derivative of a vector is also a vector and the usual rules of differentiation apply,

du dv
—(u+v)=—+—
dt dt dt (1.6.7)
i(a(t)v)z ad—v+ Vd—a
dt dt dt
Also, it is straight forward to show that { A Problem 2}
i(V- )= -%er—v-a i(v><a)=v><%+ﬂ><a (1.6.8)
dt dt dt dt dt dt

(The order of the terms in the cross-product expression is important here.)

1.6.3 Fields

In many applications of vector calculus, a scalar or vector can be associated with each
point in space X. In this case they are called scalar or vector fields. For example

f(x) temperature a scalar field (a scalar-valued function of position)
v(x) velocity a vector field (a vector valued function of position)

These quantities will in general depend also on time, so that one writes #(x,t) or v(x,t).

Partial differentiation of scalar and vector fields with respect to the variable t is
symbolised by 0/0t. On the other hand, partial differentiation with respect to the
coordinates is symbolised by 0/0x;. The notation can be made more compact by

introducing the subscript comma to denote partial differentiation with respect to the
coordinate variables, in which case ¢; = 0¢/0x;, U, j = o’u; / 0x;0X, , and so on.

1.6.4 The Gradient of a Scalar Field

Let ¢(x) be a scalar field. The gradient of ¢ is a vector field defined by (see Fig. 1.6.4)

W, W, 0,
0%, OX, OX,

_ %,
0X;

_ o9

 Ox

Ve

Gradient of a Scalar Field (1.6.9)

The gradient V¢ is of considerable importance because if one takes the dot product of
V¢ with dx, it gives the increment in ¢:
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V¢-dx=§—¢ei -dx;e;

= % dx;
oX;
=dg
= ¢(x + dx) — ¢(dx)

q .
X

(1.6.10)

Figure 1.6.4: the gradient of a vector

If one writes dx as |dx|e = dxe , where e is a unit vector in the direction of dx, then

dg dg
Vog-e=| — =— 1.6.11
¢ ¢ ( dX j in e direction dn ( )

This quantity is called the directional derivative of ¢, in the direction of e, and will be
discussed further in §1.6.11.

The gradient of a scalar field is also called the scalar gradient, to distinguish it from the
vector gradient (see later)’, and is also denoted by

grad g =Vg (1.6.12)
Example (of the Gradient of a Scalar Field)
Consider a two-dimensional temperature field € = X, +X; . Then
VO =2xXe, +2Xx,e,
For example, at (1,0), =1, VO =2e, andat (1,1), 6 =2, VO =2e, +2e,, Fig. 1.6.5.
Note the following:

(i) V@ points in the direction normal to the curve € = const.
(ii) the direction of maximum rate of change of @ is in the direction of V&

2 in this context, a gradient is a derivative with respect to a position vector, but the term gradient is used
more generally than this, e.g. see §1.14
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(iii) the direction of zero d@ is in the direction perpendicular to V&

/v' o(1,1)

»

-1 V(1,0)

0=2
Figure 1.6.5: gradient of a temperature field

The curves 8(X,,X, )= const. are called isotherms (curves of constant temperature). In

general, they are called iso-curves (or iso-surfaces in three dimensions).
n

Many physical laws are given in terms of the gradient of a scalar field. For example,
Fourier’s law of heat conduction relates the heat flux q (the rate at which heat flows
through a surface of unit area’) to the temperature gradient through

q=-kveo (1.6.13)

where K is the thermal conductivity of the material, so that heat flows along the direction
normal to the isotherms.

The Normal to a Surface

In the above example, it was seen that V@ points in the direction normal to the curve
6 = const. Here it will be seen generally how and why the gradient can be used to obtain
a normal vector to a surface.

Consider a surface represented by the scalar function f(x,,X,,X;)=c, C a constant*, and

also a space curve C lying on the surface, defined by the position vector
r =X, (t)e, + X, (t)e, + X;(t)e;. The components of r must satisfy the equation of the

surface, so f (X, (t), X, (1), X, (t)) = c. Differentiation gives

df of dx, of dx, of dx,
dt  ox, dt  oOx, dt Ox, dt

3 the flux is the rate of flow of fluid, particles or energy through a given surface; the flux density is the flux
per unit area but, as here, this is more commonly referred to simply as the flux

* a surface can be represented by the equation f (X,,X,,X;) = ¢; for example, the expression

X12 + X22 + X32 = 4 is the equation for a sphere of radius 2 (with centre at the origin). Alternatively, the

surface can be written in the form X; = g(X;, X, ), for example X; = /4 - X12 - xg
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which is equivalent to the equation grad f - (dr/dt)=0 and, as seen in §1.6.2, dr/dt is a
vector tangential to the surface. Thus grad f is normal to the tangent vector; grad f must

be normal to all the tangents to all the curves through p, so it must be normal to the plane
tangent to the surface.

Taylor’s Series
Writing ¢ as a function of three variables (omitting time t), so that ¢ = ¢(X,,X,, X;) , then

¢ can be expanded in a three-dimensional Taylor’s series:

0 0 0
#(X, +dX,, X, +dX,, X, +dx;) =¢(xl,x2,x3)+{a—zdxl +67¢dx2 +a_¢dx3}

2 3
1{0°¢
+E{W(dxl)2 +}

Neglecting the higher order terms, this can be written as

of dx

d(x + dx) = §(x) +&-

which is equivalent to 1.6.9, 1.6.10.

1.6.5 The Nabla Operator

The symbolic vector operator V is called the Nabla operator®. One can write this in
component form as

V:e18i+e2ai+e38i:eiai (1.6.14)
X, X, X, X

One can generalise the idea of the gradient of a scalar field by defining the dot product
and the cross product of the vector operator V with a vector field (e), according to the
rules

V.(o):e.i-(o), Vx(o):e.ix(o) (1.6.15)

The following terminology is used:

grad g =V¢
divu=V-u (1.6.16)

curlu =V xu

5 or del or the Gradient operator
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These latter two are discussed in the following sections.

1.6.6 The Divergence of a Vector Field

From the definition (1.6.15), the divergence of a vector field a(x) is the scalar field

%j.(ajej)zﬁ

divazv-az(ei
oX;

Divergence of a Vector Field (1.6.17)

_a_x1 OX, OX,

Differential Elements & Physical interpretations of the Divergence

Consider a flowing compressible® material with velocity field v(x,,X,, ;). Consider
now a differential element of this material, with dimensions AX,,AX,,AX,, with bottom
left-hand corner at (X,,X,,X,), fixed in space and through which the material flows’, Fig.
1.6.6.

The component of the velocity in the X, direction, v,, will vary over a face of the element

but, if the element is small, the velocities will vary linearly as shown; only the
components at the four corners of the face are shown for clarity.

Since [distance = time x velocity], the volume of material flowing through the right-hand
face in time At is At times the “volume” bounded by the four corner velocities (between
the right-hand face and the plane surface denoted by the dotted lines); it is straightforward
to show that this volume is equal to the volume shown to the right, Fig. 1.6.6b, with

constant velocity equal to the average velocity v, , which occurs at the centre of the face.

ave ?

Thus the volume of material flowing out is® Ax,Ax,v, At and the volume flux, i.e. the

ave

rate of volume flow, is AX,AX,Vv,,. Now

ave *
Vae =V, (X, +AX, X, +2AX,, X3 +TAX;)
Using a Taylor’s series expansion, and neglecting higher order terms,

ov ov ov
Vave z\/1()(]’)(2,)(3)4'AX1 _l+%AX2 —1+%AX3 L
0X, oX, OX,

6 that is, it can be compressed or expanded
7 this type of fixed volume in space, used in analysis, is called a control volume
8 the velocity will change by a small amount during the time interval At. One could use the average

velocity in the calculation, i.e. %(V1 xt)+v (x,t+ At)), but in the limit as At — 0, this will reduce to

v, (x,1)
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with the partial derivatives evaluated at (X, X,,X;), so the volume flux out is

ov ov ov
AX,AX AV, (X, X, X, )+ AX —- + LAX, —L + LAx, —L
2 3{ 1( 1 2 3) 16X1 2 2 axz 2 3 8X3}

A PV, (X + AX, X, + AX,, X, + AX;)
s 7’

- 1
> ;
",’ Vi (X 4 AX, X, + AX,, Xs)
!

7
1
1
1
|
1 1
1 ! 1
1 ,’ :
AXZ I’ K 1
1 1
"_"’, V(X AXL X, X+ AX) ,,'

N /// 7’

(X;5 %55 X3) ﬁ Vi (X, + AX;, X5, X5)
X

1

(2) (b)

Figure 1.6.6: a differential element; (a) flow through a face, (b) volume of material
flowing through the face

The net volume flux out (rate of volume flow out through the right-hand face minus the
rate of volume flow in through the left-hand face) is then Ax,Ax,AX,(dv, /X, ) and the net
volume flux per unit volume is ov, /0X,. Carrying out a similar calculation for the other
two coordinate directions leads to

ov, ov, Ov,

net unit volume flux out of an elemental volume: —+—=+—=divv  (1.6.18)
OX, OX, OX,

which is the physical meaning of the divergence of the velocity field.

If divv > 0, there is a net flow out and the density of material is decreasing. On the other
hand, if divv =0, the inflow equals the outflow and the density remains constant — such a

material is called incompressible’. A flow which is divergence free is said to be
isochoric. A vector v for which divv =0 is said to be solenoidal.

Notes:

e The above result holds only in the limit when the element shrinks to zero size — so that
the extra terms in the Taylor series tend to zero and the velocity field varies in a linear
fashion over a face

« consider the velocity at a fixed point in space, v(x,t). The velocity at a later time,
v(x,t+ At), actually gives the velocity of a different material particle. This is shown in
Fig. 1.6.7 below: the material particles 1,2,3 are moving through space and whereas
v(x,t) represents the velocity of particle 2, v(x,t+ At) now represents the velocity of
particle 1, which has moved into position x. This point is important in the consideration
of the kinematics of materials, to be discussed in Chapter 2

° a liquid, such as water, is a material which is incompressible
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v(x,1)
time t @ @—> @
v(x,t+At)
fmet 4 O O
X —Ax X X +Ax

Figure 1.6.7: moving material particles

Another example would be the divergence of the heat flux vector q. This time suppose
also that there is some generator of heat inside the element (a source), generating at a rate
of r per unit volume, r being a scalar field. Again, assuming the element to be small, one
takes I to be acting at the mid-point of the element, and one considers r(X, ++AX,, ).

Assume a steady-state heat flow, so that the (heat) energy within the elemental volume
remains constant with time — the law of balance of (heat) energy then requires that the net
flow of heat out must equal the heat generated within, so

0 0 0
AX, AX, AX, D AX, AX, AX, A AX, AX, AX, Ky
OX OX 0

1 2 3

or or or
= AX, AX, AX A T (X, X, X5 ) + 2 AX, — + LAX, — + L AX, —
1 2 3{ ( 1 2 3) 2 laxl 2 2 axz 2 3 8X3}

Dividing through by AX,AX,AX, and taking the limit as AX,,AX,,AX; — 0, one obtains
divq=r (1.6.19)

Here, the divergence of the heat flux vector field can be interpreted as the heat generated
(or absorbed) per unit volume per unit time in a temperature field. If the divergence is
zero, there is no heat being generated (or absorbed) and the heat leaving the element is
equal to the heat entering it.

1.6.7 The Laplacian

Combining Fourier’s law of heat conduction (1.6.13), q = -k V&, with the energy
balance equation (1.6.19), divq = r, and assuming the conductivity is constant, leads to
-kV-VO=r. Now

2

oo 0 [20, |2 [20), o0
ox | ox, "ox X, ' oox]
(1.6.20)

0’6 0’0 0°0
=+ —+
ox;  Ox;  ox;
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This expression is called the Laplacian of #. By introducing the Laplacian
operator V> =V -V, one has

v29:_£ (1.6.21)

This equation governs the steady state heat flow for constant conductivity. In general, the
equation V’¢ = a is called Poisson’s equation. When there are no heat sources (or

sinks), one has Laplace’s equation, V°60 = 0. Laplace’s and Poisson’s equation arise in
many other mathematical models in mechanics, electromagnetism, etc.

1.6.8 The Curl of a Vector Field

From the definition 1.6.15 and 1.6.14, the curl of a vector field a(x) is the vector field

curla=Vxa=e, %x(ajej)
a, ' % Curl of a Vector Field (1.6.22)
T, T gy

It can also be expressed in the form

€ €, €;
curla=Vxa= i i ﬂ
X, OX, OX,
2 a a (1.6.23)
=¢ aaje =¢ aa"e—g aaie
ijk aXi k ijk 8xj i ijk an ]

Note: the divergence and curl of a vector field are independent of any coordinate system
(for example, the divergence of a vector and the length and direction of curla are

independent of the coordinate system in use) — these will be re-defined without reference
to any particular coordinate system when discussing tensors (see §1.14).

Physical interpretation of the Curl

Consider a particle with position vector r and moving with velocity v = @ xr, that is,
with an angular velocity @ about an axis in the direction of @. Then { A Problem 7}

curlv = Vx (@ xr)= 2@ (1.6.24)

Thus the curl of a vector field is associated with rotational properties. In fact, if v is the
velocity of a moving fluid, then a small paddle wheel placed in the fluid would tend to
rotate in regions where curlv # 0, in which case the velocity field v is called a vortex
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field. The paddle wheel would remain stationary in regions where curlv = 0, in which
case the velocity field v is called irrotational.

1.6.9 Identities

Here are some important identities of vector calculus { A Problem 8} :

grad(¢ + 1//) = grad¢ + grady
div(u+v)=divu+divvy (1.6.25)

curl (u + v) = curlu + curlv

grad(¢y) = ggrady +ygradg
div (¢u) =¢divu+gradg-u

curl (¢u) = ¢curlu + grad¢ xu
div(uxv)=v-curlu —u-curlv (1.6.26)
curl(gradg) = o
div(curlu) =0
div(2 gradg) = AV?¢ + gradA - gradg

1.6.10 Cylindrical and Spherical Coordinates
Cartesian coordinates have been used exclusively up to this point. In many practical
problems, it is easier to carry out an analysis in terms of cylindrical or spherical
coordinates. Differentiation in these coordinate systems is discussed in what follows'©.
Cylindrical Coordinates
Cartesian and cylindrical coordinates are related through (see Fig. 1.6.8)

x=rcosd =X +y’

y=rsind, 6=tan"(y/x) (1.6.27)
L=1 Z1=1

Then the Cartesian partial derivatives become

0 oro 060 0 0 sinf 0O
x oxor oo Yo r o0
0 or o 00 0 . 0 cos@ 0O (1.6.28)
—=——+——=sinf—+ —
oy oyor oy ol or r o6

10 this section also serves as an introduction to the more general topic of Curvilinear Coordinates covered
in §1.16-§1.19
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Figure 1.6.8: cylindrical coordinates

The base vectors are related through

e, =e cosd—e,sind e =e, cosf+e sind
e, =e sinf+e,cos6, e, =—¢,sind+e cosd (1.6.29)

z z z z

so that from Eqn. 1.6.14, after some algebra, the Nabla operator in cylindrical coordinates
reads as { A Problem 9}

V:er£+eeli+ezE (1.6.30)
or r oo lo/4

which allows one to take the gradient of a scalar field in cylindrical coordinates:

%, +l%e9+%e (1.6.31)

Vo=
¢8r'r6¢9 0z *

Cartesian base vectors are independent of position. However, the cylindrical base
vectors, although they are always of unit magnitude, change direction with position. In
particular, the directions of the base vectors e, , e, depend on @, and so these base

vectors have derivatives with respect to €: from Eqn. 1.6.29,

0
ﬁe, =€,

1.6.32
b (1.632)
89 [ r

with all other derivatives of the base vectors with respect to r,8,z equal to zero.

The divergence can now be evaluated:
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V-v—(e 946,10 e 2j-(ve +V,e, +V,e,)
rar 0 rag zaz rr oo vz
E“r Vr 16“6 E“z

or r r ol oz

(1.6.33)

Similarly the curl of a vector and the Laplacian of a scalar are { A Problem 10}

l1ov, ov, ov, ov, 1( o0 ov,
[ (e R e B A I P ey g |
' (1.6.34)

V2¢_82_¢+1%+i82¢ +82¢

o ror r*of* ozl

Spherical Coordinates

Cartesian and spherical coordinates are related through (see Fig. 1.6.9)

X = I sin 6 cos ¢ =X +y* +2°
y=rsindsing, 0= tan'l( x> +y’ /Z) (1.6.35)
Z=rcosd ¢ =tan"'(y/x)

and the base vectors are related through

e, =e sinfdcosg+e,cosfcosg—e,sing
e, =e sinfdsing+e,cosfsing+e,cosg
e, =e cosd—e,sind
(1.6.36)
e, =e,sinfcosg+e sindsing+e,cosd
e, =e,cosfcosg+e, cosfsing—e,sind

e, =—e, sing+e, cosg

Figure 1.6.9: spherical coordinates

In this case the non-zero derivatives of the base vectors are
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——e, =sinte,
%er _eH a
5 , a—¢eg = cos e, (1.6.37)
—e, =—¢€
69 4 r

ie¢ =-—sinfe, —coste,
o

and it can then be shown that { A Problem 11}

V¢=a—¢er+la—(pe+ I %¢

14 . _e¢
or r oo rsiné o¢
ov
V-V=i2i(rzvr)+ - i(sin@\/g)Jr_;—"j
r-or rsinf o6 rsind og¢
0’9 20¢p 1 0°¢p cotfdp 1 0’p
+———+— —+
or* ror r*of> r* 00 r’sin’6og’

(1.6.38)

Vip =

1.6.11 The Directional Derivative

Consider a function ¢(x). The directional derivative of ¢ in the direction of some vector
w is the change in ¢ in that direction. Now the difference between its values at position
x and x+w is, Fig. 1.6.10,

dg = g(x + w)— 4(x) (1.6.39)
\ ¢

D, g(x) —— 4" “1h(x)

Figure 1.6.10: the directional derivative
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An approximation to d¢ can be obtained by introducing a parameter & and by
considering the function ¢(x +&w); one has @(x +ew),_, = #(x) and

Px+aw), =g(x+w).

If one treats ¢ as a function of &, a Taylor’s series about £ =0 gives

dg(e)| |, &* d’4(e)
= 0 — — DY
$0)=pO+e=g |+ T
or, writing it as a function of x + ew,
d
(X +ew) =P(X)+ gd— ¢(x+gw)+
& =0

By setting ¢ =1, the derivative here can be seen to be a linear approximation to the
increment d¢, Eqn. 1.6.39. This is defined as the directional derivative of the function

#(x) at the point x in the direction of w, and is denoted by

0,4[w] P(x +ew) The Directional Derivative (1.6.40)

del,.,

The directional derivative is also written as D ¢(x).

The power of the directional derivative as defined by Eqn. 1.6.40 is its generality, as seen
in the following example.

Example (the Directional Derivative of the Determinant)

Consider the directional derivative of the determinant of the 2x 2 matrix A, in the
direction of a second matrix T (the word “direction” is obviously used loosely in this
context). One has

0, (detA)T]= L
de

d

det(A + £T)

=0

[(All +el, )(Azz +ely, )_ (A12 +el, )(Azl +eTy, )]

=0

= A11T22 + A22T11 - A12T21 - A21T12

The Directional Derivative and The Gradient

Consider a scalar-valued function ¢ of a vector z. Let z be a function of a parameter ¢,

¢=¢(z,(¢),2,(¢),2,(¢)). Then
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dp_opd _0¢ b

de oz, de oz de
Thus, with z = x+ ew,

d

de

0
fIW] oz de ox

¢(z(g))=(%-d—ZJ _ . (1.6.41)

&=0

which can be compared with Eqn. 1.6.11. Note that for Eqns. 1.6.11 and 1.6.41 to be
consistent definitions of the directional derivative, w here should be a unit vector.

1.6.12 Formal Treatment of Vector Calculus

The calculus of vectors is now treated more formally in what follows, following on from
the introductory section in §1.2. Consider a vector h, an element of the Euclidean vector
space E, h € E. In order to be able to speak of limits as elements become “small” or
“close” to each other in this space, one requires a norm. Here, take the standard
Euclidean norm on E, Eqn. 1.2.8,

= /(h,h) =vh-h (1.6.42)

Consider next a scalar function f : E — R. If there is a constant M > 0 such that
|f (h) < M|h| as h — o, then one writes

f(h)=0O(h]) as h—o (1.6.43)

This is called the Big Oh (or Landau) notation. Eqn. 1.6.43 states that | f (h)| goes to

zero at least as fast as |h|. An expression such as

f(h) = g(h)+O(|n|) (1.6.44)
then means that |f (h)— g(h) is smaller than |h| for h sufficiently close to o.
Similarly, if

m—>0 as h—o (1.6.45)

then one writes f(h)= 0(||h||) as h — o. This implies that | f(h] goes to zero faster than
[w]
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A field is a function which is defined in a Euclidean (point) space E’. A scalar field is
then a function f :E® — R. A scalar field is differentiable at a point x € E’ if there
exists a vector Df (x)e E such that

f(x+h)= f(x)+Df(x)-h+ 0(||h||) forall heE (1.6.46)

In that case, the vector Df (x) is called the derivative (or gradient) of f at x (and is given
the symbol Vf (x)).

Now setting h = ew in 1.6.46, where w € E 1is a unit vector, dividing through by & and
taking the limit as & — 0, one has the equivalent statement

Vi (x)-w f(x+ew) forall weE (1.6.47)

del,,

which is 1.6.41. In other words, for the derivative to exist, the scalar field must have a
directional derivative in all directions at X.

Using the chain rule as in §1.6.11, Eqn. 1.6.47 can be expressed in terms of the Cartesian
basis {e, |,

Vf(x)-w=—W- =—e, -W.e: (1.6.48)

This must be true for all w and so, in a Cartesian basis,

vi(x)= s—;_ei (1.6.49)

which is Eqn. 1.6.9.

1.6.13 Problems

1. A particle moves along a curve in space defined by
r=(t —4tle, +(t> +4tle, + (8> —3t° e,
Here, t is time. Find
(i) aunit tangent vector at t =2
(i) the magnitudes of the tangential and normal components of acceleration at t =2

2. Use the index notation (1.3.12) to show that %(v X a) = VX % + ((jj—: xa . Verify this

result for v =3te, —t’e,,a=t’e, +te,. [Note: the permutation symbol and the unit

vectors are independent of t; the components of the vectors are scalar functions of t
which can be differentiated in the usual way, for example by using the product rule of
differentiation. ]

Solid Mechanics Part III 48 Kelly



Section 1.6

The density distribution throughout a material is given by p =1+x-x.

(i)  what sort of function is this?
(i) the density is given in symbolic notation - write it in index notation
(iii) evaluate the gradient of p

(iv) give a unit vector in the direction in which the density is increasing the most

(v) give aunit vector in any direction in which the density is not increasing

(vi) take any unit vector other than the base vectors and the other vectors you used
above and calculate dp/dx in the direction of this unit vector

(vii) evaluate and sketch all these quantities for the point (2,1).
In parts (iii-iv), give your answer in (a) symbolic, (b) index, and (c) full notation.
Consider the scalar field defined by ¢ = x> +3yx+2z.
(i)  find the unit normal to the surface of constant ¢ at the origin (0,0,0)
(il)) what is the maximum value of the directional derivative of ¢ at the origin?
(iii) evaluate d¢/dx at the origin if dx = ds(e, +e,).
If u =X X,X,e, +X,X,e, + Xe,, determine divu and curlu.
Determine the constant a so that the vector
V= (Xl +3X, ), + (Xz —2X, )ez + (Xl +ax, )e3
is solenoidal.
Show that curlv =2 (see also Problem 9 in §1.1).

Verify the identities (1.6.25-26).
Use (1.6.14) to derive the Nabla operator in cylindrical coordinates (1.6.30).

. Derive Eqn. (1.6.34), the curl of a vector and the Laplacian of a scalar in the

cylindrical coordinates.

. Derive (1.6.38), the gradient, divergence and Laplacian in spherical coordinates.
. Show that the directional derivative D ¢(u) of the scalar-valued function of a vector

#(u) =u-u, in the direction v, is 2u-v.

. Show that the directional derivative of the functional

1r_(dv)
U(v(x))==|El| — | dx— X)V(X)dx
(v(x) 2! [dx2j !p()()
in the direction of w(X) is given by

¢ d2v(x) d’w(x)
j El —— >
0 dx dx

dx — j[ p(X)w(X)dx .
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Vector Calculus

16.1 VECTOR FIELDS

This chapter is concerned with applying calculus in the context of vector fields. A
two-dimensional vector field is a function f that maps each point (z,y) in R? to a two-
dimensional vector (u,v), and similarly a three-dimensional vector field maps (z,y, z) to
(u,v,w). Since a vector has no position, we typically indicate a vector field in graphical
form by placing the vector f(z,y) with its tail at (z,y). Figure 16.1.1 shows a represen-
tation of the vector field f(z,y) = (—x/v/22 + y2 + 4,y/1/22 + y2 + 4). For such a graph
to be readable, the vectors must be fairly short, which is accomplished by using a different

scale for the vectors than for the axes. Such graphs are thus useful for understanding the
sizes of the vectors relative to each other but not their absolute size.

Vector fields have many important applications, as they can be used to represent many
physical quantities: the vector at a point may represent the strength of some force (gravity,
electricity, magnetism) or a velocity (wind speed or the velocity of some other fluid).

We have already seen a particularly important kind of vector field—the gradient. Given
a function f(x,y), recall that the gradient is (f;(z,y), fy(z,y)), a vector that depends on
(is a function of) z and y. We usually picture the gradient vector with its tail at (z,y),
pointing in the direction of maximum increase. Vector fields that are gradients have some
particularly nice properties, as we will see. An important example is

F_ —x -y —z
T\ (22 + 2+ 22)3/27 (22 4 y2 4 22)3/2 (22 + y2 + 22)3/2 )

419
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Figure 16.1.1 A vector field.

which points from the point (z,y, z) toward the origin and has length

Va2 +y? + 22 1

(@2 442+ 2232 (/22 + y2 + 22)2

which is the reciprocal of the square of the distance from (z,y, z) to the origin—in other

words, F is an “inverse square law”. The vector F is a gradient:

F—v ! (16.1.1)

Va4 22

which turns out to be extremely useful.

FExercises 16.1.

Sketch the vector fields; check your work with Sage’s plot_vector_field function.
1. (z,y)

(=2, —y)

(@ —)

(sinx, cosy)

(y,1/x)

(x+1,2+3)

Verify equation 16.1.1.

NS RN
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16.2 LINE INTEGRALS

We have so far integrated “over” intervals, areas, and volumes with single, double, and
triple integrals. We now investigate integration over or “along” a curve— “line integrals”
are really “curve integrals”.

As with other integrals, a geometric example may be easiest to understand. Consider
the function f = x + y and the parabola y = 22 in the 2-y plane, for 0 < x < 2. Imagine
that we extend the parabola up to the surface f, to form a curved wall or curtain, as in
figure 16.2.1. What is the area of the surface thus formed? We already know one way to
compute surface area, but here we take a different approach that is more useful for the
problems to come.

Figure 16.2.1 Approximating the area under a curve. (AP)

As usual, we start by thinking about how to approximate the area. We pick some
points along the part of the parabola we're interested in, and connect adjacent points by
straight lines; when the points are close together, the length of each line segment will be
close to the length along the parabola. Using each line segment as the base of a rectangle,
we choose the height to be the height of the surface f above the line segment. If we add
up the areas of these rectangles, we get an approximation to the desired area, and in the
limit this sum turns into an integral.

Typically the curve is in vector form, or can easily be put in vector form; in this
example we have v(t) = (t,t?). Then as we have seen in section 13.3 on arc length,
the length of one of the straight line segments in the approximation is approximately
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ds = |v'|dt = /1 + 4t2 dt, so the integral is

2
1
/f(t,tQ)\/l-l—élt?dt:/ (t + )V 1+ 42 dt = 67 7————1n(4+\/ 7).
0

64

This integral of a function along a curve C'is often written in abbreviated form as

/Cf(x,w ds

EXAMPLE 16.2.1 Compute / ye® ds where C' is the line segment from (1, 2) to (4, 7).
C

We write the line segment as a vector function: v = (1,2) +#(3,5), 0 < ¢ <1, or in
parametric form x = 1+ 3t, y = 2 + 5t. Then

1
/yexds:/ (2 + 5t)etT38\/32 4 52 dt = —+/34e* — —/34e.
C

9

All of these ideas extend to three dimensions in the obvious way.

EXAMPLE 16.2.2 Compute / 2?2 ds where C is the line segment from (0,6, —1) to
c

(4,1,5).
We write the line segment as a vector function: v = (0,6, —1) +¢(4, —5,6),0 <t <1,
or in parametric form x = 4t, y = 6 — 5t, z = —1 + 6t. Then

/xzds—/ (4t)%(—1 + 6t)v/16 + 25 + 36 dt_mf/ —t? +6t3 dt = 536\/ﬁ
C

a

Now we turn to a perhaps more interesting example. Recall that in the simplest case,
the work done by a force on an object is equal to the magnitude of the force times the
distance the object moves; this assumes that the force is constant and in the direction of
motion. We have already dealt with examples in which the force is not constant; now we
are prepared to examine what happens when the force is not parallel to the direction of
motion.
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We have already examined the idea of components of force, in example 12.3.4: the
component of a force F in the direction of a vector v is

vz "

the projection of F onto v. The length of this vector, that is, the magnitude of the force
in the direction of v, is
F.v
v|
the scalar projection of F onto v. If an object moves subject to this (constant) force, in
the direction of v, over a distance equal to the length of v, the work done is

Fv [v|=F-v.

V]

Thus, work in the vector setting is still “force times distance”, except that “times” means
“dot product”.

If the force varies from point to point, it is represented by a vector field F; the dis-
placement vector v may also change, as an object may follow a curving path in two or
three dimensions. Suppose that the path of an object is given by a vector function r(t); at
any point along the path, the (small) tangent vector r’ At gives an approximation to its
motion over a short time At, so the work done during that time is approximately F -r’ At;
the total work over some time period is then

t1
/ F -r'dt.
to

It is useful to rewrite this in various ways at different times. We start with

t1
/ F~r'dt:/F-dr,
to c

abbreviating r’ dt by dr. Or we can write

tl tl rl tl
/ F-r'dt:/ F-—/|r'|dt:/ F-T|r'|dt:/F-Tds,
to to ‘r| to C

using the unit tangent vector T, abbreviating |r’| dt as ds, and indicating the path of the
object by C'. In other words, work is computed using a particular line integral of the form
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we have considered. Alternately, we sometimes write

dx dy dz
T o) _
/CF rdt—/c(f,g,h> (' ', 2" dt /C<fdt+gdt+hdt) dt

:/fda:'-l—gdy-l—hdz:/fda:-l—/gdy-l—/hdz,
c c c c

and similarly for two dimensions, leaving out references to z.

EXAMPLE 16.2.3 Suppose an object moves from (—1,1) to (2,4) along the path
r(t) = (t,t?), subject to the force F = (xsiny,y). Find the work done.

We can write the force in terms of ¢ as (tsin(¢?),t?), and compute r’(t) = (1,2t), and
then the work is

2 2
1 1) — 4
/ (tsin(?), ¢%) - (1,2¢) dt:/ tsin(t%) + 2t dt = 55 # 0 2 costd),

Alternately, we might write

2 4
4 1 16 1
/xsinydgg-l-/ydy:/ xsin(xz)dx-;-/ ydy:_COS( >+Cos( )+___
c c —1 1 2 2 2 2

getting the same answer. |

Fxercises 16.2.

1. Compute /c zy® ds along the line segment from (1,2, 0) to (2,1,3). =
2. Compute /Csina:ds along the line segment from (—1,2,1) to (1,2,5). =
3. Compute /c z cos(xy) ds along the line segment from (1,0,1) to (2,2,3). =
4. Compute / sin z dx + cos y dy along the top half of the unit circle, from (1,0) to (—1,0). =
c
5. Compute /c ze? dz + 2%y dy along the line segment y =3, 0 < z < 2. =
6. Compute / ze? dz + 2%y dy along the line segment z =4, 0 <y < 4. =
c
7. Compute / ze? dz + 2’y dy along the curve z = 3t, y =12, 0<t < 1. =
c
8. Compute / ze? dx + ’y dy along the curve (ef,e?), —1<t<1. =
c

9. Compute / (coszx,siny) - dr along the curve (t,t),0 <t <1. =
c



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,
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Compute / (1/xy,1/(x +y)) - dr along the path from (1,1) to (3,1) to (3,6) using straight
c

line segments. =

Compute / (1/zy,1/(x +y)) - dr along the curve (2¢t,5t), 1 <t < 4. =
c

Compute / (1/2y,1/(xz +y)) - dr along the curve (¢t,t%), 1 <t < 4. =
c

Compute / yz dx + xz dy + xy dz along the curve (t,t*,t3), 0 <t < 1. =
c

Compute / yz dx + xz dy + xy dz along the curve (cost,sint,tant), 0 <t < w. =
c

An object moves from (1,1) to (4,8) along the path r(t) = (t*,¢%), subject to the force
F = (22 siny). Find the work done. =

An object moves along the line segment from (1,1) to (2,5), subject to the force F =
(x/(z* +y?),y/(z* +y*)). Find the work done. =

An object moves along the parabola r(t) = (¢,t°), 0 < t < 1, subject to the force F =
(1/(y+1),—1/(x 4+ 1)). Find the work done. =

An object moves along the line segment from (0,0,0) to (3,6, 10), subject to the force F =
(x?,y?, 2*). Find the work done. =

An object moves along the curve r(t) = (vt,1/v/t,t) 1 <t < 4, subject to the force F =
(y, z,x). Find the work done. =

An object moves from (1,1, 1) to (2,4,8) along the path r(t) = (¢,t,t3), subject to the force
F = (sinx, siny, sin z). Find the work done. =

An object moves from (1,0,0) to (—1,0,7) along the path r(t) = (cost,sint,t), subject to
the force F = (y?,y?, x2). Find the work done. =

Give an example of a non-trivial force field F and non-trivial path r(¢) for which the total
work done moving along the path is zero.

16.3 THE FUNDAMENTAL THEOREM OF LINE INTEGRALS

One way to write the Fundamental Theorem of Calculus (7.2.1) is:

b
/ f(x)dz = £(b) - f(a).

That is, to compute the integral of a derivative f’ we need only compute the values of f

at the endpoints. Something similar is true for line integrals of a certain form.

THEOREM 16.3.1 Fundamental Theorem of Line Integrals Suppose a curve
C' is given by the vector function r(t¢), with a = r(a) and b = r(b). Then

/ Vf-dr = f(b) - f(a),
C

provided that r is sufficiently nice.
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Proof. We write r = (x(t),y(t), 2(t)), so that v’ = (2/(¢),y'(t), 2'(t)). Also, we know
that Vf = (fz, fy, f-). Then

b b
[Vt = [ edy £ O 0 W) = [ fy 15
C a a

By the chain rule (see section 14.4) fya’ + f,y' + f.2' = df /dt, where f in this context
means f(z(t),y(t), z(t)), a function of t. In other words, all we have is

/ £y dt = £(5) — f(a).

In this context, f(a) = f(z(a),y(a), z(a)). Since a = r(a) = (x(a),y(a), z(a)), we can write
f(a) = f(a)—this is a bit of a cheat, since we are simultaneously using f to mean f(t) and
f(z,y, 2), and since f(z(a),y(a),z(a)) is not technically the same as f({(z(a),y(a), z(a))),
but the concepts are clear and the different uses are compatible. Doing the same for b, we
get

[ viedr= [ r@a= 1) - 1@ = 1) - ) .
C a

This theorem, like the Fundamental Theorem of Calculus, says roughly that if we
integrate a “derivative-like function” (f’ or Vf) the result depends only on the values of
the original function (f) at the endpoints.

If a vector field F is the gradient of a function, F = V f, we say that F is a conserva-
tive vector field. If F is a conservative force field, then the integral for work, |, o F -dr,
is in the form required by the Fundamental Theorem of Line Integrals. This means that
in a conservative force field, the amount of work required to move an object from point a
to point b depends only on those points, not on the path taken between them.

EXAMPLE 16.3.2 An object moves in the force field

T
(22 4+ y2 + 22)3/2" (22 + y2 + 22)3/2" (22 + 42 + 22)3/2 )
along the curve r = (1 +t,t3,tcos(rt)) as t ranges from 0 to 1. Find the work done by the
force on the object.

The straightforward way to do this involves substituting the components of r into F,
forming the dot product F-r’, and then trying to compute the integral, but this integral is
extraordinarily messy, perhaps impossible to compute. But since F = V(1/y/2? + y? + 2?)
we need only substitute:

(2,1,—1)

1 1
/F-dr: = = = =— —1.
c VR +yP 42200 V6
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Another immediate consequence of the Fundamental Theorem involves closed paths.
A path C' is closed if it forms a loop, so that traveling over the C' curve brings you back to
the starting point. If C'is a closed path, we can integrate around it starting at any point
a; since the starting and ending points are the same,

/Vf~dr=f(a)—f(a)=0~
C

For example, in a gravitational field (an inverse square law field) the amount of work
required to move an object around a closed path is zero. Of course, it’s only the net
amount of work that is zero. It may well take a great deal of work to get from point a to
point b, but then the return trip will “produce” work. For example, it takes work to pump
water from a lower to a higher elevation, but if you then let gravity pull the water back
down, you can recover work by running a water wheel or generator. (In the real world you
won’t recover all the work because of various losses along the way.)

To make use of the Fundamental Theorem of Line Integrals, we need to be able to
spot conservative vector fields F and to compute f so that F = Vf. Suppose that F =
(P,Q)=Vf. Then P = f, and Q = f,, and provided that f is sufficiently nice, we know
from Clairaut’s Theorem (14.6.2) that Py, = f,, = fyz = Q». If we compute P, and Q,
and find that they are not equal, then F is not conservative. If P, = @),, then, again
provided that F is sufficiently nice, we can be assured that F is conservative. Ultimately,
what’s important is that we be able to find f; as this amounts to finding anti-derivatives,
we may not always succeed.

EXAMPLE 16.3.3 Find an f so that (3 + 2zy, 22 — 3y?) = Vf.
First, note that

%(3 + 2zy) =2z and %(azz — 3y?) = 2z,

so the desired f does exist. This means that f, = 3 + 22y, so that f = 3z + 2%y + g(v);
the first two terms are needed to get 3+ 2zy, and the g(y) could be any function of y, as it
would disappear upon taking a derivative with respect to z. Likewise, since f, = x? — 392,
f = 2%y — y® + h(x). The question now becomes, is it possible to find g(y) and h(z) so
that

3z + 2%y + g(y) = °y — y° + h(z),

and of course the answer is yes: g(y) = —y3, h(z) = 3z. Thus, f = 3z + 2%y — 3. O

We can test a vector field F = (P, @, R) in a similar way. Suppose that (P,Q, R) =
(fe, fy, f-). If we temporarily hold z constant, then f(x,y,z2) is a function of x and y,
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and by Clairaut’s Theorem P, = f,, = fy» = Q.. Likewise, holding y constant implies
P, = fi2 = f.z = Ry, and with = constant we get @, = f,. = f., = R,. Conversely, if we
find that P, = Q4, P, = R, and Q. = R, then F is conservative.

Fxercises 16.3.

Find an f so that Vf =
Find an f so that Vf =
Find an f so that Vf =
Find an f so that Vf =

(2z + 9%, 2y + ?), or explain why there is no such f. =
(
(
(
Find an f so that Vf = (ycosx,sinx), or explain why there is no such f. =
(z?
(
)

z®, —y*), or explain why there is no such f. =
xe?, ye®), or explain why there is no such f. =

ycosx,ysinz), or explain why there is no such f. =

Find an f so that Vf =
Find an f so that Vf =

z?y® xy*), or explain why there is no such f. =
yz,xz,2y), or explain why there is no such f. =

3

@ NS gk whH

Evaluate / (103: —22y°) dx — 32°y® dy where C is the part of the curve z° —5z?y? —7z> =0

c
from (3, -2) to (3,2). =
9. Let F = (yz,zz,zy). Find the work done by this force field on an object that moves from
(1,0,2) to (1,2,3). =
10. Let F = (e¥,ze? + sinz,ycosz). Find the work done by this force field on an object that
moves from (0,0,0) to (1,—1,3). =
11. Let

B —x —y —z
- <(9:2 T2 + 22)3/27 (22 4 42 + 22)3/2 (22 + y2 + 22)3/2 >
Find the work done by this force field on an object that moves from (1,1,1) to (4,5,6). =

16.4 GREEN’S THEOREM

We now come to the first of three important theorems that extend the Fundamental The-
orem of Calculus to higher dimensions. (The Fundamental Theorem of Line Integrals has
already done this in one way, but in that case we were still dealing with an essentially
one-dimensional integral.) They all share with the Fundamental Theorem the following
rather vague description: To compute a certain sort of integral over a region, we may do
a computation on the boundary of the region that involves one fewer integrations.

Note that this does indeed describe the Fundamental Theorem of Calculus and the
Fundamental Theorem of Line Integrals: to compute a single integral over an interval, we
do a computation on the boundary (the endpoints) that involves one fewer integrations,

namely, no integrations at all.
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THEOREM 16.4.1 Green’s Theorem If the vector field F = (P, Q)) and the region
D are sufficiently nice, and if C' is the boundary of D (C is a closed curve), then

P
/ 9Q _ 6—dA:/ Pdx+ Qdy,
Jdr Oy C
D
provided the integration on the right is done counter-clockwise around C. 0

To indicate that an integral / is being done over a closed curve in the counter-
c

clockwise direction, we usually write 7{ . We also use the notation 9D to mean the
c

boundary of D oriented in the counterclockwise direction. With this notation, 7{ = / .
c oD
We already know one case, not particularly interesting, in which this theorem is true:

If F is conservative, we know that the integral % F - dr = 0, because any integral of a
C
conservative vector field around a closed curve is zero. We also know in this case that

OP/0y = 0Q)/0x, so the double integral in the theorem is simply the integral of the zero
function, namely, 0. So in the case that F is conservative, the theorem says simply that
0=0.

EXAMPLE 16.4.2 We illustrate the theorem by computing both sides of

/ x4dx+xydy://y—0dA,
oD s

where D is the triangular region with corners (0,0), (1,0), (0, 1).
Starting with the double integral:

1 pl—zx 1 2 31
(1—x) (1—2x) 1
y—OdA:/ / ydydx:/ —dr=——"| =-—.
// o Jo 0 2 6 o O

D
There is no single formula to describe the boundary of D, so to compute the left side
directly we need to compute three separate integrals corresponding to the three sides of
the triangle, and each of these integrals we break into two integrals, the “dz” part and the
“dy” part. The three sides are described by y =0, y =1 — z, and « = 0. The integrals

are then
1 0 0 1 0 0
/x4dx—i—a:ydy:/ :(:4d:z:—|—/ Ody—i—/ x4dx—|—/ (1—y)ydy—|—/ de—f—/ 0dy
oD 0 0 1 0 0 1
1 1 1 1
—g+0—5+6+0+0—6.

Alternately, we could describe the three sides in vector form as (t,0), (1 — ¢,¢), and
(0,1 —t). Note that in each case, as t ranges from 0 to 1, we follow the corresponding side
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in the correct direction. Now

1 1 1
/ 334d33+:17ydy:/ t4+t-0dt+/ —(1—t)4—|-(1—t)tdt-|—/ 0+ 0dt
oD 0 0 0

1 1
1
:/ t4dt+/ —(1=t)*+ 1 —t)tdt = ~.
0 0 6

|

In this case, none of the integrations are difficult, but the second approach is some-
what tedious because of the necessity to set up three different integrals. In different
circumstances, either of the integrals, the single or the double, might be easier to compute.
Sometimes it is worthwhile to turn a single integral into the corresponding double integral,
sometimes exactly the opposite approach is best.

Here is a clever use of Green’s Theorem: We know that areas can be computed using

é/ldA

computes the area of region D. If we can find P and @ so that 0Q/0x — OP/dy = 1, then
the area is also

double integrals, namely,

/ Pdz+ Qdy.
oD

It is quite easy to do this: P =0,Q = x works, asdo P = —y,QQ =0 and P = —y/2,Q =
x/2.

EXAMPLE 16.4.3 An ellipse centered at the origin, with its two principal axes aligned
with the z and y axes, is given by

We find the area of the interior of the ellipse via Green’s theorem. To do this we need a
vector equation for the boundary; one such equation is (acost, bsint), as t ranges from 0
to 27w. We can easily verify this by substitution:

2 2 2 .2 2 . 2
T a“cos“t b sin“t

— _ZQ = 5 + 2 — cos®t +sin?t = 1.
a a

Let’s consider the three possibilities for P and @) above: Using 0 and x gives

27 27
7{ Odr+zdy = / a cos(t)bcos(t) dt = / abcos®(t) dt.
c 0 0
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Using —y and 0 gives

2 2
7{ —ydr+0dy = / —bsin(t)(—asin(t)) dt = / absin?(t) dt.
c 0 0

Finally, using —y/2 and x/2 gives

B Qﬁ_bsin(t) o a cos(t)
fc——dx+ dy = /0 (—asin(t)) dt + ——=—=(bcos(t)) dt

2 2
2 : .2 2 2
b t b t b
:/ i +acos dt:/ @ dt = mab.

0 2 2 0o 2
The first two integrals are not particularly difficult, but the third is very easy, though the
choice of P and () seems more complicated. 0

(0,0)
(a,0)

Figure 16.4.1 A “standard” ellipse, z—z + z—z =1.

Proof of Green’s Theorem.  We cannot here prove Green’s Theorem in general, but

we can do a special case. We seek to prove that

%Pdw-ﬁ-Qdy—//a—Q—a—]yj

It is sufficient to show that

fro-[[-%n ma fon-[[%

which we can do if we can compute the double integral in both possible ways, that is, using
dA = dydx and dA = dx dy.
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For the first equation, we start with

oP b e gp b
/ a—ydA—/a/g a—ydyda:—/a P(z,g2(z)) — P(x,g1(x)) dz.

5 1(x)

Here we have simply used the ordinary Fundamental Theorem of Calculus, since for the
inner integral we are integrating a derivative with respect to y: an antiderivative of P/dy
with respect to y is simply P(z,y), and then we substitute g; and g2 for y and subtract.

Now we need to manipulate 550 Pdzx. The boundary of region D consists of 4 parts,
given by the equations y = g1(x), *x = b, y = g2(z), and x = a. On the portions z = b
and x = a, dr = 0dt, so the corresponding integrals are zero. For the other two portions,
we use the parametric forms x = ¢, y = g1(t), a <t < b, and x = t, y = go(t), letting ¢
range from b to a, since we are integrating counter-clockwise around the boundary. The
resulting integrals give us

fcpdx:/abp(t,gl(t))dH/bap(t,gg(t))dt:/jp(t,gl(t))dt—/abp(t,gz(t))dt

:/ P(t, g1(t)) — P(t, g2(t)) dt

which is the result of the double integral times —1, as desired.
The equation involving () is essentially the same, and left as an exercise. [ ]

Ezxercises 16.4.

1. Compute /a 2y dx + 3z dy, where D is described by 0 <2 <1,0<y < 1. =
D
2. Compute /a zy dx + xy dy, where D is described by 0 <z <1, 0<y < 1. =
D
3. Compute /a e** T3 dx + ¥ dy, where D is described by —2 <z <2, -1 <y<1. =
D
4. Compute /a ycosx dx + ysinz dy, where D is described by 0 <z <7/2,1 <y <2 =
D
5. Compute /a 2y dx + zy® dy, where D is described by 0 <z <1,0<y < z. =
D
6. Compute / z\/ydx + v/x + ydy, where D is described by 1 <x <2, 2z <y <4. =
aD
7. Compute / (x/y) dx + (2 + 3x) dy, where D is described by 1 <z <2, 1<y <z’ =
aD
8. Compute /a siny dx + sin x dy, where D is described by 0 < x < 7/2, 2 <y < 7/2. =
D

2
9. Compute / xlnydzr, where D is described by 1 <z <2, " <y<e’ . =
oD
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10. Compute / V' 1+ z2dy, where D is described by —1 <z <1, 2°<y<1. =
aD

11. Compute / 2’y dx — zy® dy, where D is described by 22 + 3% < 1. =
aD

12. Compute / y® dz + 22° dy, where D is described by 2% + y? < 4. =
aD

13. Evaluate 7{ (y —sin(z)) dx + cos(z) dy, where C is the boundary of the triangle with vertices
c
(0,0), (1,0), and (1,2) oriented counter-clockwise. =

14. Finish our proof of Green’s Theorem by showing that ?{ Qdy = / / g—Q dA.
c x
D

16.5 DIVERGENCE AND CURL

Divergence and curl are two measurements of vector fields that are very useful in a variety of
applications. Both are most easily understood by thinking of the vector field as representing
a flow of a liquid or gas; that is, each vector in the vector field should be interpreted as a
velocity vector. Roughly speaking, divergence measures the tendency of the fluid to collect
or disperse at a point, and curl measures the tendency of the fluid to swirl around the point.
Divergence is a scalar, that is, a single number, while curl is itself a vector. The magnitude
of the curl measures how much the fluid is swirling, the direction indicates the axis around
which it tends to swirl. These ideas are somewhat subtle in practice, and are beyond
the scope of this course. You can find additional information on the web, for example at
http://mathinsight.org/curl_idea and http://mathinsight.org/divergence_idea
and in many books including Div, Grad, Curl, and All That: An Informal Text on Vector
Calculus, by H. M. Schey.
Recall that if f is a function, the gradient of f is given by

_Jof of of
Vf—<%’a—y’%>'

A useful mnemonic for this (and for the divergence and curl, as it turns out) is to let

g 0 0
v - a ' Aa ) o )
or’ Oy’ 0z
that is, we pretend that V is a vector with rather odd looking entries. Recalling that
(u,v,wya = (ua,va, way, we can then think of the gradient as

[0 0 0N, /o of o
vf_<%’8_y’£>f_<8x’8y’az>’

that is, we simply multiply the f into the vector.
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The divergence and curl can now be defined in terms of this same odd vector V by
using the cross product and dot product. The divergence of a vector field F = (f, g, h) is

/o 9 @ _of g on

The curl of F is

VXxF=

oh 9dg Of Oh 0g Of
oy 0z 0z Ox’0x Oy/

khQ°|Q3 -
< &lom
>Qo =

Here are two simple but useful facts about divergence and curl.

THEOREM 16.5.1 V- (VxF)=0. n

In words, this says that the divergence of the curl is zero.

THEOREM 16.5.2 V x (Vf) = 0. n

That is, the curl of a gradient is the zero vector. Recalling that gradients are conser-
vative vector fields, this says that the curl of a conservative vector field is the zero vector.
Under suitable conditions, it is also true that if the curl of F is O then F is conservative.
(Note that this is exactly the same test that we discussed on page 427.)

EXAMPLE 16.5.3 Let F = (e*,1,z€*). Then V x F = (0,e* — e#,0) = 0. Thus, F is
conservative, and we can exhibit this directly by finding the corresponding f.

Since f, = e, f = xe* + g(y,2). Since f, = 1, it must be that g, = 1, so g(y,2) =
y+ h(z). Thus f = ze* +y+ h(z) and

ze® = f, =xe® + 0+ h'(2),

so h(z) =0,1ie., h(z)=C,and f =ze*+y+C. O

We can rewrite Green’s Theorem using these new ideas; these rewritten versions in
turn are closer to some later theorems we will see.

Suppose we write a two dimensional vector field in the form F = (P, @,0), where P
and @ are functions of = and y. Then

J
2
¢
and so (VxF)-k=(0,0,Q, —Py)-(0,0,1) = Q, — P,. So Green’s Theorem says

LDF-dr:/(aDPdas-l-Qdy:é/Qm—PydAzé (VxF)-kdA. (16.5.1)

V xF = :<0707Qm_Py>7

-
oo =
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Roughly speaking, the right-most integral adds up the curl (tendency to swirl) at each
point in the region; the left-most integral adds up the tangential components of the vector
field around the entire boundary. Green’s Theorem says these are equal, or roughly, that
the sum of the “microscopic” swirls over the region is the same as the “macroscopic” swirl
around the boundary.

Next, suppose that the boundary 0D has a vector form r(t), so that r’(¢) is tangent to
the boundary, and T = r/(¢)/|r/(t)] is the usual unit tangent vector. Writing r = (z(t), y(t))
we get

and then
(y', —2')

v’ (2)]

is a unit vector perpendicular to T, that is, a unit normal to the boundary. Now

N =

Nds — A=) ot = ' dt— O
/é)DF Nds—/aD(P,Q> 00 v’ (t)|dt /8DPy dt — Qz' dt

:/ Pdy— Qdx = —Qdx + Pdy.
dD )
So far, we’ve just rewritten the original integral using alternate notation. The last integral

looks just like the right side of Green’s Theorem (16.4.1) except that P and @ have traded
places and @ has acquired a negative sign. Then applying Green’s Theorem we get

—Qdaz—l—de://Pm-l—deA://V-FdA.
oD
D D

Summarizing the long string of equalities,

/ F-Nds://V~FdA. (16.5.2)
oD =

Roughly speaking, the first integral adds up the flow across the boundary of the region,
from inside to out, and the second sums the divergence (tendency to spread) at each point
in the interior. The theorem roughly says that the sum of the “microscopic” spreads is the
same as the total spread across the boundary and out of the region.
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Exercises 16.5.
1. Let F = (xy, —xy) and let D be given by 0 < z < 1, 0 < y < 1. Compute / F - dr and

oD
/ F-Nds. =
oD

2. Let F = (ax? by*) and let D be given by 0 < x

/ F-Nds. =
oD

3. Let F = (ay® bz*) and let D be given by 0 < x

/ F-Nds. =
oD

4. Let F = (sinzcosy,coszsiny) and let D be given by 0 < z < 7/2, 0 < y < z. Compute
/ F-drand/ F-Nds. =
oD oD

IN
\‘}—‘
o
IN
<
A

< 1. Compute / F - dr and
oD

IN

1, 0 <y < z. Compute / F - dr and
oD

5. Let F = (y,—z) and let D be given by x* + 3*> < 1. Compute /
B
=

Let F = (x,y) and let D be given by * 4+ y* < 1. Compute /
o

F-dr and/ F - Nds.
D 8D

F-drand/ F-Nds. =
D oD

Prove theorem 16.5.1.
Prove theorem 16.5.2.

If V.-F = 0, F is said to be incompressible. Show that any vector field of the form
F(z,y,2) = (f(y, 2),9(z, 2), h(z,y)) is incompressible. Give a non-trivial example.

© e &

16.6 VECTOR FUNCTIONS FOR SURFACES

We have dealt extensively with vector equations for curves, r(t) = (z(t),y(t), 2(¢)). A

similar technique can be used to represent surfaces in a way that is more general than the

equations for surfaces we have used so far. Recall that when we use r(t) to represent a

curve, we imagine the vector r(¢) with its tail at the origin, and then we follow the head

of the arrow as t changes. The vector “draws” the curve through space as t varies.
Suppose we instead have a vector function of two variables,

r(u,v) = (x(u,v),y(u,v), z(u,v)).

As both u and v vary, we again imagine the vector r(u,v) with its tail at the origin, and
its head sweeps out a surface in space. A useful analogy is the technology of CRT video
screens, in which an electron gun fires electrons in the direction of the screen. The gun’s
direction sweeps horizontally and vertically to “paint” the screen with the desired image.
In practice, the gun moves horizontally through an entire line, then moves vertically to the
next line and repeats the operation. In the same way, it can be useful to imagine fixing a
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value of v and letting r(u, v) sweep out a curve as u changes. Then v can change a bit, and
r(u,v) sweeps out a new curve very close to the first. Put enough of these curves together
and they form a surface.

EXAMPLE 16.6.1 Consider the function r(u,v) = (vcosu,vsinu,v). For a fixed value
of v, as u varies from 0 to 27, this traces a circle of radius v at height v above the z-y
plane. Put lots and lots of these together,and they form a cone, as in figure 16.6.1. O

Figure 16.6.1 Tracing a surface.

EXAMPLE 16.6.2 Let r = (vcosu,vsinu,u). If v is constant, the resulting curve is a
helix (as in figure 13.1.1). If w is constant, the resulting curve is a straight line at height
u in the direction u radians from the positive x axis. Note in figure 16.6.2 how the helixes
and the lines both paint the same surface in a different way. 0

This technique allows us to represent many more surfaces than previously.
EXAMPLE 16.6.3 The curve given by
r = ((2 4 cos(3u/2)) cosu, (2 + cos(3u/2)) sinu, sin(3u/2))

is called a trefoil knot. Recall that from the vector equation of the curve we can compute
the unit tangent T, the unit normal N, and the binormal vector B = T x N; you may
want to review section 13.3. The binormal is perpendicular to both T and N; one way to
interpret this is that N and B define a plane perpendicular to T, that is, perpendicular
to the curve; since N and B are perpendicular to each other, they can function just as i



438 Chapter 16 Vector Calculus

X7

TN

.,,
]

1SS

&

Figure 16.6.2 Tracing a surface. (AP)

and j do for the z-y plane. Of course, N and B are functions of u, changing as we move
along the curve r(u). So, for example, c(u,v) = N cosv + Bsinv is a vector equation for
a unit circle in a plane perpendicular to the curve described by r, except that the usual
interpretation of ¢ would put its center at the origin. We can fix that simply by adding c
to the original r: let f = r(u) 4 c(u, v). For a fixed u this draws a circle around the point
r(u); as u varies we get a sequence of such circles around the curve r, that is, a tube of
radius 1 with r at its center. We can easily change the radius; for example r(u) 4 ac(u, v)
gives the tube radius a; we can make the radius vary as we move along the curve with
r(u)+g(u)c(u, v), where g(u) is a function of u. As shown in figure 16.6.3, it is hard to see
that the plain knot is knotted; the tube makes the structure apparent. Of course, there is
nothing special about the trefoil knot in this example; we can put a tube around (almost)
any curve in the same way. O

Figure 16.6.3 Tubes around a trefoil knot, with radius 1/2 and 3 cos(u)/4. (AP)
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We have previously examined surfaces given in the form f(z,y). It is sometimes
useful to represent such surfaces in the more general vector form, which is quite easy:
r(u,v) = (u,v, f(u,v)). The names of the variables are not important of course; instead
of disguising = and y, we could simply write r(x,y) = (z,y, f(x,y)).

We have also previously dealt with surfaces that are not functions of x and y; many
of these are easy to represent in vector form. One common type of surface that cannot be
represented as z = f(z,y) is a surface given by an equation involving only x and y. For

2 are “vertical” surfaces. For every point (x,y) in the plane

example, r+y=1landy ==z
that satisfies the equation, the point (z,y, z) is on the surface, for every value of z. Thus,
a corresponding vector form for the surface is something like (f(u), g(u),v); for example,
2

;).

Yet another sort of example is the sphere, say x? +y?+ 22 = 1. This cannot be written

2+ 1y = 1 becomes (u,1 — u,v) and y = 22 becomes (u,u

in the form z = f(z,y), but it is easy to write in vector form; indeed this particular
surface is much like the cone, since it has circular cross-sections, or we can think of it as
a tube around a portion of the z-axis, with a radius that varies depending on where along
the axis we are. One vector expression for the sphere is (m cosu, V1 —vZsinu, v)—
this emphasizes the tube structure, as it is naturally viewed as drawing a circle of radius
v/1 — 02 around the z-axis at height v. We could also take a cue from spherical coordinates,
and write (sinw cosv,sinusinv, cosu), where in effect © and v are ¢ and 6 in disguise.

It is quite simple in Sage to plot any surface for which you have a vector representation.
Using different vector functions sometimes gives different looking plots, because Sage in
effect draws the surface by holding one variable constant and then the other. For example,
you might have noticed in figure 16.6.2 that the curves in the two right-hand graphs are
superimposed on the left-hand graph; the graph of the surface is just the combination of
the two sets of curves, with the spaces filled in with color.

Here’s a simple but striking example: the plane x + y + z = 1 can be represented
quite naturally as (u,v,1 —u — v). But we could also think of painting the same plane by
choosing a particular point on the plane, say (1,0,0), and then drawing circles or ellipses
(or any of a number of other curves) as if that point were the origin in the plane. For
example, (1 —vcosu — vsinu, vsinu, v cosu) is one such vector function. Note that while
it may not be obvious where this came from, it is quite easy to see that the sum of the
x, y, and z components of the vector is always 1. Computer renderings of the plane using
these two functions are shown in figure 16.6.4.

Suppose we know that a plane contains a particular point (xg,yo, z0) and that two
vectors u = (ug, u1, uz) and v = (v, v1, v3) are parallel to the plane but not to each other.
We know how to get an equation for the plane in the form az + by 4+ cz = d, by first
computing u x v. It’s even easier to get a vector equation:

r(u,v) = (xo, Yo, 20) + uu + vv.
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Figure 16.6.4 Two representations of the same plane. (AP)

The first vector gets to the point (xg, yo, 20) and then by varying u and v, uu 4 vv gets to
every point in the plane.

Returning to x + y + z = 1, the points (1,0,0), (0,1,0), and (0,0,1) are all on the
plane. By subtracting coordinates we see that (—1,0,1) and (—1,1,0) are parallel to the
plane, so a third vector form for this plane is

(1,0,0) + u(—1,0,1) + v(—1,1,0) = (1 —u — v, v, u).

This is clearly quite similar to the first form we found.

We have already seen (section 15.4) how to find the area of a surface when it is defined
in the form f(z,y). Finding the area when the surface is given as a vector function is very
similar. Looking at the plots of surfaces we have just seen, it is evident that the two sets
of curves that fill out the surface divide it into a grid, and that the spaces in the grid are
approximately parallelograms. As before this is the key: we can write down the area of a
typical little parallelogram and add them all up with an integral.

Suppose we want to approximate the area of the surface r(u,v) near r(ug,vg). The
functions r(u,vg) and r(ug,v) define two curves that intersect at r(ug,vg). The deriva-
tives of r give us vectors tangent to these two curves: r,(ug,vo) and r,(ug, vp), and then
r,, (ug, vo) du and r,(ug,vg) dv are two small tangent vectors, whose lengths can be used
as the lengths of the sides of an approximating parallelogram. Finally, the area of this
parallelogram is |r, X r,|dudv and so the total surface area is

b pd
//\ruxrv\dudv.
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EXAMPLE 16.6.4 We find the area of the surface (vcosu,vsinu,u) for 0 < u < 7
and 0 < v < 1; this is a portion of the helical surface in figure 16.6.2. We compute

r, =

(—vsinu,vcosu, 1) and r, = (cosu,sinu,0). The cross product of these two vectors

is (sinu, — cosu,v) with length /1 + v2, and the surface area is

™ 1
/ / \/1+v2dvdu:7r\/§+7rln(\/§+1).
o Jo 2 2

Fxercises 16.6.

1.

© ® e Tk

10.
11.

12.

13.
14.
15.
16.

Describe or sketch the surface with the given vector function.
a. r(u,v) =(u+v,3—v,1+4u+ 5v)

b. r(u,v) = (2sinu, 3 cosu,v)

c. r(s,t) = (s,t,t* — s7)

d. r(s,t) = (ssin2t, s, scos2t)

. Find a vector function r(u,v) for the surface.

a. The plane that passes through the point (1,2, —3) and is parallel to the vectors (1,1, —1)
and (1, -1, 1).
b. The lower half of the ellipsoid 222 + 4y* + 2% = 1.

c. The part of the sphere of radius 4 centered at the origin that lies between the planes
z=—2and z = 2.

Find the area of the portion of x + 2y + 4z = 10 in the first octant. =

Find the area of the portion of 2z 4 4y + z = 0 inside 2* + y* = 1. =

Find the area of z = 2 + y? that lies below z = 1. =

Find the area of z = \/x2 + y2 that lies below z = 2. =

Find the area of the portion of 2% + y? 4+ 2? = a® that lies in the first octant. =

Find the area of the portion of z? + 3* + 2% = a? that lies above 2® +y*> < b*, b < a. =
Find the area of z = 2% — y? that lies inside z* + y* = a®. =

Find the area of z = zy that lies inside z°® + y*? = a*. =

Find the area of 2 + y? + 2% = a? that lies above the interior of the circle given in polar
coordinates by » = acos . =

Find the area of the cone z = k+v/x? + y2 that lies above the interior of the circle given in
polar coordinates by » = acosf. =

Find the area of the plane z = ax + by + ¢ that lies over a region D with area A. =
Find the area of the cone z = kv/x2 4 y? that lies over a region D with area A. =
Find the area of the cylinder z? + 22 = a? that lies inside the cylinder z? + y* = a?. =

The surface f(z,y) can be represented with the vector function (x,y, f(x,y)). Set up the
surface area integral using this vector function and compare to the integral of section 15.4.
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16.7 SURFACE INTEGRALS

In the integral for surface area,

b pd
/ / |ty X ry| dudv,
a C

the integrand |r, X r,|du dv is the area of a tiny parallelogram, that is, a very small surface
area, so it is reasonable to abbreviate it d.S; then a shortened version of the integral is

£/1~d5.

We have already seen that if D is a region in the plane, the area of D may be computed

with
/ / 1. dA,
D

so this is really quite familiar, but the d.S hides a little more detail than does dA.
Just as we can integrate functions f(x,y) over regions in the plane, using

é [ tv)aa,

so we can compute integrals over surfaces in space, using

é/f(x,y, z)dS.

In practice this means that we have a vector function r(u,v) = (x(u,v), y(u,v), z(u, v)) for
the surface, and the integral we compute is

/ab /Cdf(l’(uav),y(u,v),Z(u,v))|ru X 1| dudv.

That is, we express everything in terms of v and v, and then we can do an ordinary double
integral.

EXAMPLE 16.7.1 Suppose a thin object occupies the upper hemisphere of z? + y? +
2?2 = 1 and has density o(z,y,2) = 2. Find the mass and center of mass of the object.
(Note that the object is just a thin shell; it does not occupy the interior of the hemisphere.)
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We write the hemisphere as r(¢, ) = (cos 6 sin ¢, sin 6 sin ¢, cos ¢), 0 < ¢ < w/2 and
0 <60 <27 Soryp = (—sinfsing,cosfsin¢p,0) and ry = (cosb cos ¢, sinf cos ¢, — sin ¢).
Then
rg X ry = (—cosf sin? ¢, — sin @ sin? ¢, — cos ¢ sin @)

and
lrg X ry| = |sin¢| = sin ¢,

since we are interested only in 0 < ¢ < 7/2. Finally, the density is z = cos¢ and the

27 pm/2
/ / cos psinpdop df = .
o Jo

By symmetry, the center of mass is clearly on the z-axis, so we only need to find the

integral for mass is

z-coordinate of the center of mass. The moment around the z-y plane is

27 pm/2 2w pm/2 2
/ / zcos¢sin¢d¢d9:/ / cos> psinpdpdh = —,
o Jo o Jo 3

so the center of mass is at (0,0,2/3). O

Now suppose that F is a vector field; imagine that it represents the velocity of some
fluid at each point in space. We would like to measure how much fluid is passing through
a surface D, the flux across D. As usual, we imagine computing the flux across a very
small section of the surface, with area dS, and then adding up all such small fluxes over D
with an integral. Suppose that vector N is a unit normal to the surface at a point; F - N
is the scalar projection of F onto the direction of N, so it measures how fast the fluid is
moving across the surface. In one unit of time the fluid moving across the surface will fill a
volume of F - N dS, which is therefore the rate at which the fluid is moving across a small
patch of the surface. Thus, the total flux across D is

é/F-NdS:Z/F-dS,

defining dS = N dS. As usual, certain conditions must be met for this to work out; chief
among them is the nature of the surface. As we integrate over the surface, we must choose
the normal vectors N in such a way that they point “the same way” through the surface.
For example, if the surface is roughly horizontal in orientation, we might want to measure
the flux in the “upwards” direction, or if the surface is closed, like a sphere, we might want
to measure the flux “outwards” across the surface. In the first case we would choose N to
have positive z component, in the second we would make sure that N points away from the
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origin. Unfortunately, there are surfaces that are not orientable: they have only one side,
so that it is not possible to choose the normal vectors to point in the “same way” through
the surface. The most famous such surface is the Mdbius strip shown in figure 16.7.1. It
is quite easy to make such a strip with a piece of paper and some tape. If you have never
done this, it is quite instructive; in particular, you should draw a line down the center of
the strip until you return to your starting point. No matter how unit normal vectors are
assigned to the points of the Mobius strip, there will be normal vectors very close to each
other pointing in opposite directions.

Figure 16.7.1 A Mobius strip. (AP)

Assuming that the quantities involved are well behaved, however, the flux of the vector
field across the surface r(u,v) is

//F-NdS://F-wh'uer|dA://F-(ru><rv)dA.
Ty, X 1y
D D D

In practice, we may have to use r, X r,, or even something a bit more complicated to make
sure that the normal vector points in the desired direction.

EXAMPLE 16.7.2 Compute the flux of F = (x, v, z*) across the cone z = \/W,
0 < z <1, in the downward direction.

We write the cone as a vector function: r = (vcosu,vsinu,v), 0 < v < 27 and
0 <wv < 1. Thenr, = (—vsinu,vcosu,0) and r, = (cosu,sinu,1) and r, X r, =
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(vcosu,vsinu, —v). The third coordinate —v is negative, which is exactly what we desire,

that is, the normal vector points down through the surface. Then

27 27
/ / x,y,2") - (vcosu,vsinu, —v)dvdu—/ / zvcosu + yvsinu — z4v dv du

27
:/ / v2 cos® u + v?sin? u — v° dv du
0 0

27 1
:/ / vt — S dvdu=".
o Jo 3

Fxercises 16.7.

1.

10.

11.

Find the center of mass of an object that occupies the upper hemisphere of 22 + y* 4+ 2% = 1
and has density 22 + y?. =

. Find the center of mass of an object that occupies the surface z = zy, 0 <2 <1,0<y <1

and has density /1 + 22 4+ y2. =

. Find the center of mass of an object that occupies the surface z = \/z2? + 32, 1 < z < 4 and

has density z°z. =

Find the centroid of the surface of a right circular cone of height A and base radius r, not
including the base. =

. Evaluate //(2, —3,4) - N dS, where D is given by z = 2° +¢?, -1 <z <1, -1 <y <1,

D
oriented up. =

. Evaluate //(x,y, 3)-NdS, where D is given by z =3x — 5y, 1 <z < 2,0 <y < 2, oriented

up. =

Evaluate // z,y, —2) - N dS, where D is given by z = 1 —z? —y?, 22 +y? < 1, oriented up.

. Evaluate //(azy,yz,zm>-NdS, where Dis given by z =2 +9*+2,0<z <1, 2 <y <1,

D
oriented up. =

. Evaluate // -INdS, where D is given by z =2y, 0 <z < 1, —x < y < z, oriented

up. =
Evaluate //(azz, yz,2) - NdS, where D is given by z = a® — 2* — ¢?, 2? + ¢ < b?, oriented

up. =
A fluid has density 870 kg/m® and flows with velocity v = (z,y* z*), where distances are

in meters and the components of v are in meters per second. Find the rate of flow outward
through the portion of the cylinder 2 + y? =4, 0 < z < 1 for which y > 0. =
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12. Gauss’s Law says that the net charge, @), enclosed by a closed surface, S, is

Q= [[BNas

where E is an electric field and ¢y (the permittivity of free space) is a known constant; N is
oriented outward. Use Gauss’s Law to find the charge contained in the cube with vertices
(£1,+1,+1) if the electric field is E = (z,y, z). =

16.8 STOKES’S THEOREM

Recall that one version of Green’s Theorem (see equation 16.5.1) is

/aDF-drzéf(VxF)-de.

Here D is a region in the z-y plane and k is a unit normal to D at every point. If D is
instead an orientable surface in space, there is an obvious way to alter this equation, and
it turns out still to be true:

THEOREM 16.8.1 Stokes’s Theorem  Provided that the quantities involved are
sufficiently nice, and in particular if D is orientable,

/aDF~dr://(V><F)~NdS,

if 0D is oriented counter-clockwise relative to N. O

Note how little has changed: k becomes N, a unit normal to the surface, and dA
becomes dS, since this is now a general surface integral. The phrase “counter-clockwise
relative to N” means roughly that if we take the direction of N to be “up”, then we go
around the boundary counter-clockwise when viewed from “above”. In many cases, this
description is inadequate. A slightly more complicated but general description is this:
imagine standing on the side of the surface considered positive; walk to the boundary and
turn left. You are now following the boundary in the correct direction.

EXAMPLE 16.8.2 Let F = (e®¥ cos z, 7%z, ry) and the surface D be z = /1 — y2 — 22,
oriented in the positive x direction. It quickly becomes apparent that the surface integral
in Stokes’s Theorem is intractable, so we try the line integral. The boundary of D is the
unit circle in the y-z plane, r = (0, cosu,sinu), 0 < u < 2w. The integral is

27 2m
/ (€™ cos z, 2%z, zy) - (0, — sinu, cos u) du = / O0du =0,
0 0

because x = 0. O
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EXAMPLE 16.8.3 Consider the cylinder r = (cosu,sinu,v), 0 < u <27, 0 < v < 2,
oriented outward, and F = (y, zz, xy). We compute

/ VxF-NdS:/ F .dr
5 &D

in two ways.

First, the double integral is

27 2 2T 2
/ / (0, —sinu,v — 1) - (cosu, sinu, 0) dvdu = / / —sin? wdv du = —27.
o Jo o Jo

The boundary consists of two parts, the bottom circle (cost,sint,0), with ¢ ranging
from 0 to 27, and (cost,sint, 2), with ¢ ranging from 27 to 0. We compute the correspond-
ing integrals and add the results:

27 0
/ —Sinztdt—l—/ —sin?t+2cos’t = —m — = 27,
0 2

T

as before. O

An interesting consequence of Stokes’s Theorem is that if D and E are two orientable
surfaces with the same boundary, then

g/(VxF)-NdS: aDF~dr:/{9EF~dr:£/(V><F)~NdS.

Sometimes both of the integrals

//(VxF)-NdS and / F -dr
I 0D

are difficult, but you may be able to find a second surface E so that

gf(VxF)-NdS

has the same value but is easier to compute.

EXAMPLE 16.8.4 In example 16.8.2 the line integral was easy to compute. But we
might also notice that another surface E with the same boundary is the flat disk y2+22 < 1,
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given by r = (0, vcosu,vsinu). The normal is ry X ry = (v,0,0). We compute the curl:
VxF=(zx—2% —e"sinz —y,2xz — 2" cos 2).
Since x = 0 everywhere on the surface,

(VxF)-N=(0,—sinz—1y,0)-(v,0,0) =0,

[[oas =0
E

as before. In this case, of course, it is still somewhat easier to compute the line integral,

so the surface integral is

avoiding V x F entirely. 0

EXAMPLE 16.8.5 Let F = (—y?, x,22), and let the curve C be the intersection of the
cylinder z? 4+ 2 = 1 with the plane y + z = 2, oriented counter-clockwise when viewed

from above. We compute / F - dr in two ways.
C

First we do it directly: a vector function for C' is r = (coswu,sinu,2 — sinu), so
r’ = (—sinu, cosu, — cosu), and the integral is then

27 27
/ yQSinu+xcosu—22cosudu:/ sin® u + cos® u — (2 — sinu)? cosu du = 7.
0 0

To use Stokes’s Theorem, we pick a surface with C' as the boundary; the simplest
such surface is that portion of the plane y + z = 2 inside the cylinder. This has vector
equation r = (vcosu,vsinu,2 — vsinu). We compute r, = (—vsinu,vcosu, —v cosu),
r, = (cosu,sinu, —sinu), and r, X r, = (0, —v, —v). To match the orientation of C we
need to use the normal (0, v,v). The curl of F is (0,0, 1+ 2y) = (0,0,1+ 2vsinu), and the
surface integral from Stokes’s Theorem is

2 1
/ / (14 2vusinu)vdvdu = .
o Jo

In this case the surface integral was more work to set up, but the resulting integral is
somewhat easier. 0
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Proof of Stokes’s Theorem.  We can prove here a special case of Stokes’s Theorem,
which perhaps not too surprisingly uses Green’s Theorem.

Suppose the surface D of interest can be expressed in the form z = g(z,y), and let
F = (P,Q, R). Using the vector function r = (z,y, g(x,y)) for the surface we get the

surface integral

Zwmszé/m QP Ry Qo Py (g gy, 1) dA

— // —Ry9s + Q.92 — P.gy + Ry9y + Qo — Py dA
E

Here F is the region in the x-y plane directly below the surface D.
For the line integral, we need a vector function for 0D. If (z(t),y(t)) is a vector
function for OF then we may use r(t) = (z(t),y(t), g(z(t),y(t))) to represent D. Then

d:z: dz b dax dy Ozdxr Ozdy
F.dr = haad pZr 29
/aD o / Q § R dt = /a dt+th+R<8xdt+8 dt) .

using the chain rule for dz/dt. Now we continue to manipulate this:

dx Ozdxr 0zdy
/Pdt+Q (8xdt+8ydt) dt

b 0z 0z
:/a KPJrRa ) - <Q+Ra )ﬂ it
0z 0z
:/8E<P+Ra) <Q+Ra )d‘”’

which now looks just like the line integral of Green’s Theorem, except that the functions
P and @ of Green’s Theorem have been replaced by the more complicated P + R(0z/0x)
and Q + R(0z/0y). We can apply Green’s Theorem to get

[ () (0 - [ 2 (0 18) - o12)

Now we can use the chain rule again to evaluate the derivatives inside this integral, and it

becomes

:/ Qm+@zgx+Rxgy_Py_Pzgy_Rygdia

which is the same as the expression we obtained for the surface integral. [ ]
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Fxercises 16.8.

1.

Let F = (z,2,y). The plane z = 2z + 2y — 1 and the paraboloid z = z* + y* intersect in a
closed curve. Stokes’s Theorem implies that

//(VxF)~NdS:?{CF'dr://(VXF).Nd&

where the line integral is computed over the intersection C' of the plane and the paraboloid,
and the two surface integrals are computed over the portions of the two surfaces that have
boundary C (provided, of course, that the orientations all match). Compute all three inte-
grals. =

. Let D be the portion of z = 1 — 2% — y? above the z-y plane, oriented up, and let F =

(xy?, —z*y, ryz). Compute //(V x F)-NdS. =
D

. Let D be the portion of z = 2z + 5y inside x® + y* = 1, oriented up, and let F = (y, z, —x).

Compute/ F.dr. =
aD

Compute y{ 2?2 dz + 3z dy — y® dz, where C is the unit circle z* + y® = 1 oriented counter-
c

clockwise. =

. Let D be the portion of z = px + qy + r over a region in the x-y plane that has area A,

oriented up, and let F = (az + by + cz, ax + by + ¢z, ax + by + cz). Compute / F-dr. =
oD

. Let D be any surface and let F = (P(z), Q(y), R(z)) (P depends only on z, @ only on y,

and R only on z). Show that / F.-dr =0.
oD

Show that / fVg+ gVf-dr = 0, where r describes a closed curve C to which Stokes’s
c
Theorem applies. (See theorems 12.4.1 and 16.5.2.)

16.9 THE DIVERGENCE THEOREM

The third version of Green’s Theorem (equation 16.5.2) we saw was:

/ F-Nds://V-FdA.
oD 5

With minor changes this turns into another equation, the Divergence Theorem:

THEOREM 16.9.1 Divergence Theorem  Under suitable conditions, if F is a
region of three dimensional space and D is its boundary surface, oriented outward, then

Z/F-NdS:/E//V-FdV.
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Proof. Again this theorem is too difficult to prove here, but a special case is easier. In
the proof of a special case of Green’s Theorem, we needed to know that we could describe
the region of integration in both possible orders, so that we could set up one double integral
using dx dy and another using dy dz. Similarly here, we need to be able to describe the
three-dimensional region E in different ways.

We start by rewriting the triple integral:

/E/ V.FdV:/E//(Pm+Qy+Rz)dV:/E//Pde+/E/ dev+/,3//RZdV

The double integral may be rewritten:

g/F.NdS:é/(Pi—l—Qj—FRkyNdS:g/Pi-NdSJré/Qj.NdeLg/Rk,Nds.

To prove that these give the same value it is sufficient to prove that

//Pi-NdS:///Pde,
//QJ NdS = // Q, dV, and (16.9.1)
[ mesas [

Not surprisingly, these are all pretty much the same; we’ll do the first one.
We set the triple integral up with dx innermost:

92(y,z)
7 s 91(y,2) 5

where B is the region in the y-z plane over which we integrate. The boundary surface of
E consists of a “top” x = g2(y, 2), a “bottom” =z = ¢1(y, z), and a “wrap-around side”
that is vertical to the y-z plane. To integrate over the entire boundary surface, we can
integrate over each of these (top, bottom, side) and add the results. Over the side surface,
the vector N is perpendicular to the vector i, so

//Pi~NdS: //OdS:O.

side side

Thus, we are left with just the surface integral over the top plus the surface integral
over the bottom. For the top, we use the vector function r = (g2(y, 2), y, z) which gives
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ry X r, = (1, —g2y, —g2.); the dot product of this with i = (1,0,0) is 1. Then

/p/ Pi'NdS:é/P(gz(y,z%y,z)dA.

In almost identical fashion we get
J[ piNds=- [[ Pa.2)..0d4
bottom B

where the negative sign is needed to make N point in the negative x direction. Now

//Pi-NdS: //P(gg(y, 2),9, 2) dA—//P(gl(y,z),y,z) dA,

which is the same as the value of the triple integral above. [ ]

EXAMPLE 16.9.2 Let F = (2z,3y,22%), and consider the three-dimensional volume
inside the cube with faces parallel to the principal planes and opposite corners at (0,0, 0)
and (1,1,1). We compute the two integrals of the divergence theorem.

The triple integral is the easier of the two:

1,1 pl
/ / / 2434 2zdxdydz = 6.
o Jo Jo

The surface integral must be separated into six parts, one for each face of the cube. One
face is z = 0 or r = (u,v,0), 0 < w,v < 1. Then r, = (1,0,0), r, = (0,1,0), and
r, Xr, = (0,0,1). We need this to be oriented downward (out of the cube), so we use
(0,0, —1) and the corresponding integral is

1,1 1 1
/ / —zzdudv:/ / Odudv = 0.
o Jo o Jo

Another faceisy =1 or r = (u, 1,v). Then r, = (1,0,0), r, = (0,0,1), and r,, X 1, =
(0,—1,0). We need a normal in the positive y direction, so we convert this to (0, 1,0), and
the corresponding integral is

1,1 11
/ / 3ydudv:/ / 3dudv = 3.
o Jo o Jo

The remaining four integrals have values 0, 0, 2, and 1, and the sum of these is 6, in
agreement with the triple integral. 0
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EXAMPLE 16.9.3 Let F = (22,93, 22), and consider the cylindrical volume 22432 < 9,
0 < z < 2. The triple integral (using cylindrical coordinates) is

2m 3 2
/ / / (3r% + 22)rdzdr df = 2797.
o Jo Jo

For the surface we need three integrals. The top of the cylinder can be represented
by r = (vcosu,vsinu, 2); r, X r, = (0,0, —v), which points down into the cylinder, so we
convert it to (0,0,v). Then

2 3 27 3
/ / (v cos® u, v3sin® u, 4) - (0,0, v) dvdu = / / 4v dv du = 367.
o Jo o Jo

The bottom is r = (v cosu, vsinu, 0); r, X r, = (0,0, —v) and

27 3 27 3
/ / (v3 cos® u, v sin® u, 0) - (0,0, —v) dvdu = / / 0dvdu = 0.
o Jo o Jo

The side of the cylinder is r = (3 cosu, 3sinu,v); r, X r, = (3 cosu, 3sinu,0) which does
point outward, so

2 2
/ / (27 cos® u, 27 sin® u, v?) - (3 cosu, 3sinu, 0) dv du
o Jo
27 2
= / / 81 cos® u + 81 sin u dv du = 243.
o Jo

The total surface integral is thus 367 + 0 + 2437 = 2797. 0

Fzxercises 16.9.

1. Using F = (3z, y°, —2z2> and the region bounded by 2° +y*> =9, 2 = 0, and z = 5, compute
both integrals from the Divergence Theorem. =

2. Let E be the volume described by 0 < x < a, 0 <y <b,0<2<c,and F = <x2,y2,22>.

Compute //F-NdS. =
OE

3. Let E be the volume described by 0 < oz < 1, 0 < y
(2zy, 3xy, ze"TY). Compute //F-NdS. =
OF

IN

,0< 2< 1, and F =

4. Let E be the volume described by 0 <2 <1, 0<y<z,0<z<z+y, and F = (x,2y, 3z).

Compute //F-NdS. =
EYo)
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5.

6.

11.

12.

Let E be the volume described by z* + y® + 2° < 4, and F = (2%, *, 2%). Compute // F.
OE

NdS. =
Let E be the hemisphere described by 0 < z < /1 — 22 — 32, and

F = (V22 +y2 + 22, /22 + y2 + 22, /22 + y2 + 22). Compute //F-NdS. =
OE

. Let E be the volume described by 2% +3* < 1,0 < 2z < 4, and F = (z3?, yz, 22). Compute

//F-NdS. =
oF

. Let E be the solid cone above the x-y plane and inside z = 1 — /22 + 42, and F =

(x cos® z,ysin® z, /22 + y22). Compute // F-NdS. =
OE

. Prove the other two equations in the display 16.9.1.
10.

Suppose D is a closed surface, and that D and F' are sufficiently nice. Show that
/ (VxF)-NdS=0

D
where N is the outward pointing unit normal.

Suppose D is a closed surface, D is sufficiently nice, and F' = (a,b,c) is a constant vector

field. Show that
//F -NdS =0
D

where N is the outward pointing unit normal.

We know that the volume of a region F may often be computed as / / / dx dy dz. Show that

1
this volume may also be computed as 3 / / (z,y,z) - NdS where N is the outward pointing
OE

unit normal to OF.



Fourier Series and Fourier Transform

2.1 INTRODUCTION

Fourier series is used to get frequency spectrum of a tinmeadtosignal, when signal is a periodic function of
time. We have seen that the sum of two sinusoids is periodiziged their frequencies are integer multiple
of a fundamental frequencyyp.

2.2 TRIGONOMETRIC FOURIER SERIES
Consider a signal(t), a sum of sine and cosine function whose frequencies argraiteultiple ofwg
X(t) = ag+ a1 cos(wot) + azcos(2wpt) + - - -
by sin (wgt) + by sin (2wot) + - - -

X(t) =ag+ i(an cos(nwot) + b sin (Nwot ) ) 1)
n=1

ap, ai,..., b1, by, ... are constants andy is the fundamental frequency.

Evaluation of Fourier Coefficients
To evaluateag we shall integrate both sides of egn. (1) over one pefigdo + T) of x(t) at an arbitrary
timetg

to+T to+T © to+T o to+T
/x(t)dt: / aodt + % an / cos(nwt)dt + 5 by / sin (nwot ) dt
to to n=lg =g

Since ;" cos(nwodt) = 0

to+T
/ sin (nwpdt) =0

1 to-i:T
=7 / X(t)dt 2)

To evaluatea, andby,, we use the following result:

to+T
/ cos(nwpt) cos(mwpgt )dt = {

to

0 m=£n
T/2 m=n#0

94
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Multiply eqgn. (1) by sin(mwpt) and integrate over one period

to+T to+T o to+T

/x(t)sin(r’rwot)dt:ao / sin(mvvot)dt+z /cos(nwot)sin(rrwot)dt+

n=1 {0

to+T

fo to

n= tO

5 to+T
by = = / X(t) sin (nwt )dt
to

Example 1:

1.0
R

_3; —2—1’ lo 1’ 2 |3 o

-1.0

Fig. 2.1.

T—-1tol T=2 Wo=Tl X1t)=t—-1l<t<l1

1 1
-1
ah =0

1
. —tcosTmt costmt]?!
bn:/tsmnntdt: —
. nm nrm 1

— 1
= ——[tcosmmt 4 costmt]*; = ———[2cOSTI+ COSTI— COSTY
Nt N

_ _/_1\n
bn — jcosnn: g |:(1):|
nm Tt n

by by bs bs bs bg
2 2 2 2 2 -2
T 2 3 4t 5m et

. 1 . 1. 1.
smnt—ésm 2nt+§sm 3nt—ZS|n4nt+---

=R

bn i i d
Zl /sm(nwvot)sm(nwot)t

(4)
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Example 2:
1.0 | | |
27 0 21 47 6m t
Fig. 2.2.
t 21
X(t) = — T=2m wo=—=1
©=27 0T T
21 A
1 1 (1 1
== [xt)dt=-= |[=t?| =3
& TO/() 4n2[2 L 2
2
2 /Ftcosmdt— 1 tsint+sinnt 2n
a”_4n2.0 2| n n |,
1 [2msin 2nt sin 20t
= —_— + —
212 n n
2 7T 1 rtcosnt t2n
. = cosnt cosm
b“—m[zo/ts'””td‘—zﬂ[ n -,
—1|2mcos 2amt cos At 1
:ﬁ + -
TE n n n
-1
by = —
" nm
1 =2/-1 1 121
t) == —)sinnt=Z+-F% = 2
X(t) 2+nl<nn)smnt 2+nn;ncos(nt+n/)
_}_} sint+sm2+sm3+
T2 0T 2 3
Example 3:
A | x(1)
2 -T4 4 TR t

Fig. 2.3. Rectangular waveform
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Figure shows a periodic rectangular waveform which is syirine to the vertical axis. Obtain its F.S.
representation.

X(t) =ap+ Z (an, cos nwiot + b, sin nwot )
n=1

X(t)=ao+ ) ancos(nwot) bn=0
n=1

-T -T
= f —_— —_—
x(t)=0 for 5 <t< 7

T

T
A for — <t<—
+ r4<<4

T T
0 for—<t< —
2°'<73%

1 o A
o=y [ Ad=3
—T/4
T/4
an = 2 / Acos(nwot)dt = A {sin nwoI +sin nwoI
T Tnwo 4 4
—T/4
an = ﬁsin (n—n> = %sin (nl[> Wo = 2—“
21 2 ™ 2 T
o A2
21 T
a=0
3n 2 3n 3

A 2A 1 1
x(t)—§+? (coswot—3cos Qvot+gcos Fwot+--->

Example 4: Find the trigonometric Fourier series for the periodic sigtt).

x(7)
1.0

fo— T —>

Fig. 2.4.
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SOLUTION :
1 —-1<t<«1
-1 1<t<3
3 1 3
—l/x(t)dt—1 [+ [ (v T—4
ao—_l_ =7 =
-1 -1 t
1 2 2nm 1
==[2-2|= . - — — — _
T(2-2=0 R
) 1 3
=T /cos(nwot)dt+/cos(nwot)dt]
-1 1
2{[23|n2}—[sin32 Si nzn]}
—i 3sin n—sinsﬂt sinsﬂT—sin(nJrﬂT)——sinﬂT
T onm 2 2 2 2) 2
4  /nm
a“_is'n(z)
0 n=even
an = — n=15913

— n=37,1115
nTt

x(t)—ﬂcos(gt)—icos 3—ﬂt +icos on —icos Lnt +ee
m 2 3n 2 51 2 7mn 2
X(t) = 4 cos(Et) - }cos 3—T[t + 1 cos 5—T[t

m 2 3 2 5 2

Example 5: Find the F.S.C. for the continuous-time periodic signal
X(t)=15 0<t<1
=-15 1<t<?2
with fundamental freqwp = Tt

x(#)
1.5

-1.5

Fig. 2.5.
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SOLUTION :
T 2T[ 27 WO =TI
Wo
ap=ay=0
bn=/l.55innntdt— / 1.5sinnmtdt
15
= ﬁ{ [ cosnmi+ 1] + [cos hrt— cosnTy }
3
by=—[1—
n m_[[ COSﬂT[]
31, 2 . 2 .
X(t) = o {23|nm+33|n3n1+53|n5m+...]
° sinm+}sin3nt+}sin5m+...
Tt 3 5
1 2
/1.5dt—1.5/dt ~0
0 1
OR

By using complex exponential Fourier series

1 2
1 | |
Co=3 [/ 1.5 Mgt 1.5/e"”mdt]
0 1

2

1
3 : .
= _4jnT[ e‘]nm 7efjnTII
0 1
-3 — jnm —j2nmt —jnT
= g &M 1o e
3 A 3
-2 e __° q_
2jm'[[ e 2jnT[[ cosnty
X(t) = C.e it
2,0
1 e jn ejnTII
n_z_w Zjnn T[]
Z 2]nn mt_ el cosm|
N=—o
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forn=1

I
N[>
O\:l

Tt
A
intsintdt = — [ (1— 2)dt
sintsin 2”0/( cos2)

Whenn is even

CA[2 27  2A
B n+l1 1-n| ml-m?)

Example 7:

z-ﬂ@ /

SOLUTION :

Point (a)(—1,-2)
Point (b)(1,2)

4
y+2= E(X‘i‘l)

y+2=2x+2
y=2x
X(t) =2t
Since function is an odd function
1

1
1
an—O,ao—T/12tdt—2><0—0

1
+ 5 cosnTt

‘ 1

T nTt

1
bn = %/tsin(nm)dt _2 [—tcosnnt
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2.3 CONVERGENCE OF FOURIER SERIES — DIRICHLET CONDITIONS

Existence of Fourier Series The conditions under which a periodic signal can be remteseby an F.S.
are known as Dirichlet conditions. F: Fundamental Period

(1) The functiorx(t) has only a finite number of maxima and minima, if any within .
(2) The functionx(t) has only a finite number of discontinuities, if any within fhe.
(3) The functiorx(t) is absolutely integrable over one period, that is

.
[Ixoldt <e
0

2.4 PROPERTIES OF CONTINUOUS FOURIER SERIES

(1) Linearity: If x1(t) andxz(t) are two periodic signals with periodwith F.S.C.C, andD, then F.C. of
linear combination ok, (t) andx;(t) are given by

Proof: If z(t) = Ax(t) + Bxa(t)
to+T

[ o= e
-1

/ &It i
o T
an = AC,+BDy
(2) Time shifting: If the F.S.C. ofx(t) areC, then the F.C. of the shifted signelt —to) are
FS[X(t —to)] = &71™0 9C,

=l

Lett—to=Tt

dt =drt

1 .
=2 [ x(t —to)e IMotdt
T / X(t=to)e

1

T
/X( )e jnwop(to+T) dr = / JnWOTd-[,e—jnWoto
T T

—|
—H

Bn=e€ ™5 -Cy
(3) Time reversal: FSx(-t)] =

1 n
B“:?/ X(—t)e~IMotgt — / t)e (=W it
T T

—t=1

dt = —dt

1 g
= _ J(=mwoTyr —
T 4 x(t)e” dt=C_,
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Example 8: Compute the exponential series of the following signal.

x(7)

2.0

1.0

-5 4 3 2 -10 1 2 3 4 5

Fig. 2.8.
SOLUTION :
T=4 wy= =
1 T 1 ; 2 3

0
1]/ —an Z
Cn=4|:/2€ 2dt+/ei"5“dt]
0 1

LT
1{—“ [em21] g{e_jnne_jng}}
4] jnmt jntt

. LT T

— — N1 ) —|n= — —INn= —
z.—l [2eTJ —2+e!M_e : 2] :_—1 [e : 2+e

2jnm 2jnm
1 1 n_ 1 _jnp 3 > 1 inZ
= jnn[l 2( 1) 5€ x(t)—4+nzz_oojmT e

Example 9:
x(1)
1.0
a b
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SOLUTION :
21
T=5 Wo = &
t+2 —-2<t<-1
Xt)=¢ 10 -—-1<t<1
2—t 1<t<?2
(a.) (_270)(_1a1)
-1
(y-1) = —(x+1)
y=t+2
(b) (1,1)(2,0)
y-0= 1 (x-2)
y=-—X+2=—-t+2
1 -1 1 2
Co=¢ /(t+2)dt+/dt+/(27t)dt
2 -1 1
3
Co=3

_ 1 2
cn:% /(t+2)e*iz%Tdt+/e*iz%"dt+/(2—t)eﬂ'2%‘dt
-1 1

A B C

-1 -1
A:/e*i%Itdt+/2e*j2%rtdt
2 2

-1 -1 -1
A—_L te‘j‘p/ +ie‘j“’/+i.ej2£1/
o A (02 A A

5 (fej%TJrZej%[)Jr 25 (eiz%rfej%[)f—lo
~j2nm 42T 2nT;j
5 2 (4 25 2 4
A= o (% a0 ) oo ()
i 2nmt i 2ntt
[ESEPRIEL - -
B= € 'ZH?[ ° = - > (e]z%_esz%)
j5" j2nm
- -10 (e_j%[ e_JZ%[>+ 10 e_j%[ 5 e_jZ%T 25 e_j%f 25 eJ%[
~j2nm j2nm j2ntt 42T 42T
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c -1 [25 (% o) 22 (¥ _eﬂ;")}

5 | n2412 N2

C —i cos Z—m —CO0S 4—m
" 2n2me 5 5

Example 10: For the continuous-time periodic signal

2 .
X(t) =2+ cos(St) +4sm(5,:t)

Determine the fundamental frequengy and the Fourier series coefficiefts such that

X(t) = i Crel ™ot

n=—oo

2 . (5
X(t) = 2+cos<;t) +4sm<;t>

The time period of the signal c¢&'t) is

SOLUTION :
Given

2n 2mn
Ty=— =7 =3sec
W]_ 2§
The time period of the signal s(B7t) is
TZ:ZE:Z—HzgseC

Wo 5% 5
Ty

5
T = % > ratio of two integers, rational number, hence periodic.
2 5
2Ty =5T>
The fundamental period of the signdt) is
T=2T, =5T, =6Ssec
and the fundamental frequency is

wao 2_2m_m
°" T "6 3

x(t):2+cos< nt)+4sm< )
)

= 2+ cos(2wgt) + 4 sin(5wot)

(ejZVV0t 4 e—jZ\Not> 4 (e]5Wot _ e7j5wot)
=+ -
2 2]

=2+

—=24+05 (ejZ\Not _"_eijWOt) _ 2] (ej5W0t _ efj5W0t>

X(t) = 2jeti(=5wet 4 o 5egti(=2Wot | o4 0 5t it _ pjgtiSwot
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2( 2 2 4 4 n
B n{nzn+nchosnt} = i 100 = g (- (1)
0 neven24, 6,8, -
an:
% nodd1 3,5, 7,---

2.5 FOURIER TRANSFORM

2.5.1 Definition
Letx(t) be a signal which is a function of timie The Fourier transform of(t) is given as
e Mt (1)

X X

Fourier transform or

(t)
X (i x(t)e 12 g 2)

(w) = |
iH=/
Sincew = 2rtf

Similarly, x(t) can be recovered from its Fourier transfaxtjw) by using Inverse Fourier transform

o0

x(t) = %_[/X(jw)ej"‘”dw 3)
X(t) = /X(if)eiZ"“dt (4)

—00

Fourier transformX(jw) is the complex function of frequenay. Therefore, it can be expressed in the
complex exponential form as follows:

X(jw) = X (jwlel

Here|X(jw)| is the amplitude spectrum aft) and 20" jg phase spectrum.
For a real-valued signal

(1) Amplitude spectrum is symmetric about vertical ax{gven function.)
(2) Phase spectrum is anti-symmetrical about vertical @tagld function.)
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2.5.2 Existence of Fourier transform (Dirichlet’s conditi on)

The following conditions should be satisfied by the signaititain its F.T.

(1) The functionx(t) should be single valued in any finite time inter¥al

(2) The functiorx(t) should have at the most finite number of discontinuities infarite time intervalT.
(3) The functionx(t) should have finite number of maxima and minima in any finiteetimervalT.

(4) The functiorx(t) should be absolutely integrable, i.e.

/|x(t)|dt <o

e These conditions are sufficient, but not necessary for tireasio be Fourier transformable.

e A physically realizable signal is always Fourier transfaiite. Thus, physical realizability is the
sufficient condition for the existence of F.T.

e All energy signals are Fourier transformable.

o X(w) = FT (tx(1)
FT (1) = | o X(jw)

Example 12: Obtain the F.T. of the signa 2 u(t) and plot its magnitude and phase spectrum.

SOLUTION :
x(t) = e 2u(t)
X(f) =[xz — [ e @iz
— o0 0
1

B a+ j2nf

X(f)
To obtain the magnitude and phase spectrum:
_a—j2nf a . 2nf
X0 = a2+ (2nf)2 <a2+4n2f2>A : (a2+4n2f2 B

IX(f)] = A2+ B2 = ! !

Ja@ L Aef2 Jawe
IX(f)] = tan ! {_i"f] — tan? (‘iv)

a
1 X(f
fora=1, |X(f)] = ——, X _ _ antw
1+w2
w ol1 |2 3 4 5 10 15 25 8

[X(w)] | 1| .707 | 0.447 | 0.316 | 0.242 | 0.196 | 0.09 0.066 | 0.03 0

[X(w) | 0| 45° —-634 | —715 | —759 | —786 | —842 | —862 | —87.7 | —9O°
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ed t>0

(ii) x(t)e—atl{eaI (-0

ol

Fig. 2.13. Graphical representation ef @l

X(W) = 1 n 1 2
Catjw a—jw  aZ4+w?
2
fora=1X(w)=-—-—
(w) 1+w?
2 [X(w)
X(w)| = =0
XW)| = 2
w (in radians) | —c | —10 -5 -3|-2|-1]0|1]|2 3 4 5 10 00
X (w)] 0 0.019 | 0.0769| 0.2 [ 0.4 | 1 2[1]04]02].11276 | 0.0769| 0.019
1IX(w)l
2.0
-10.... -5 -4 -3 -2 -1 10w

Fig. 2.14. Magnitude plot
(i) x(t) = e sgn(t)

x(f) = e-a i sen(0)

1.0 k

N 10

Fig. 2.15. Graphical representation ef atlsgn(t)
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(i) X(t)=1
X(W) = /eﬁthdt =00

This means Dirichlet condition is not satisfied. But its Fedn be calculated with the help of duality

property.
3(t) <151

Duality property states thax(t) LN X(w) then
X(t) <15 2mx(—w)

HereX(t) =1, then x(—w) will be
thenX(t) =1; 10 2m3(—w)

We know thatd(w) will be an even function o, since it is impulse function.
Hence,d(—w) = d(w). Then above equation becomes

1.4 21(—w)
Thus, ifx(t) = 1, thenX(w) = 21d(w)

(ii)) x(t) = sgn(t) sgrm:{{l iig }

sgn(?)

Fig. 2.17. Graphical representation of sgh

X(t) =2u(t) -1
Differentiating both the sides

Taking the F.T. of both sides

dt
jwX(w) =2
2
(W) = w
o 0
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(iv) X(t) = u(t)
sgnt) = 2u(t) —1
2u(t) = 1+sgnt)
Taking F.T. of both sides

2F[2u(t)] = F(1) 4+ F[sgnt)] = 2md(w) + 2

2u(t) <5 2m(w) + J%v
FT 1
u(t) — to(w) + w
Properties of unit impulse:

@ [ x)30) =x0)
(2) x(t)3(t —to) = X(to)d(t —to)

® / X(1)8(t —to)dt = X(to)

(4) 3(at) = L3(1)

) / X(T)8(t —x)dt = x(t)

(6) 8(t) = gu(t)
Example 15: Obtain the F.T. of a rectangular pulse shown in Fig. 2.18.

x(1)

=772 0 12 ¢

Fig. 2.18. Rectangular pulse

SOLUTION :
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Sampling function or interpolating function or filteringrfction denoted bys;(x) or sinc(x) as shown in
figure.

sinTx
sinc(x) =

X) = 0 whenx = £nmt

(2) sinc(x) =1 whenx = 0 (using L'Hospital’s rule)

(x) =

(x) =
(3) sinc(x) is the product of an oscillating signal strof period Ztand a decreasing S|gn§J Therefore,
sinc(x) is making sinusoidal of oscillations of periogt&ith amplified decreasing contlnuouslyés

sin ¢(x)

AN

—475\\—43,t —ZR\/—R 0 n\/Zn 3n\/41t 51 X

Fig. 2.19. Sine function

sincx = %[X; sinc(0) = g =1 L'Hospital rule

sinc(1) = %T =0; sinc(—1)=0

sinc(2) = 0; sinc(—2) =0
sinc(1/4) =0.9 sinc(—1/4) =0.9
sinc(2/4) = .6366 sirc(—0.5) = .6366
sinc(3/4) = 0.3 sinc(—7.5) = .3
sinc(1.5) = —.2122 sirc(—1.5) = —.2122
sinc(2.5) =.1273 sirg(2.5) =.1273

35 3 25 LSSl -5 -5 -5

Fig. 2.20. Sine function
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Example 17: Obtain F.T. and spectrums of following signals:
(1) x(t) = coswpt (i) x(t) = sinwpt

SOLUTION :
(i) 1 oiwet . 1 jwet
X(t) = coswpt = —el"o" - Zg™ "0
2 2
1
150 21d(w); > Rl TO(W)

Frequency shifting property states teix(t) <~ X(w— p)
%ej‘”ot FLL 1w —wo)

1 .
ée‘JWOt FL, (W wo)

F ()] = FT {;ej‘”ot + ;e‘j""f’t}

X(w) = Tt[d(W —Wp) + O(W -+ Wp)]

—Wy Wo w
Fig. 2.22. Magnitude plot of cosipt
(ii) X(t) = sinwpt

mm:?wm—%y@m+mn

Wo w

Fig. 2.23. Magnitude plot of simvpt

119
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Example 18: Obtain the F.T. of

X(t) = te"u(t)
from property of Fourier transform Ftk(t)] = jd%VX(W)
FT[e®] = L
a+ jw
Freey—j 4 (L1 ) (a+ jw) (1) .fldiw(aJr w_ 1
dw \ a+ jw (a+ jw)? (a+jw)?
Inverse Fourier Transform: (IFT)
Example 19: Find the IFT of
B X(w) = % by partial fraction expansions
(i) X(w)= a+]w > by convolution property
i)y X(w) = e M
(iv) X(w) = e Vu(w)
SOLUTION :
(i) __A B S
X(w) jw+2+(1w+2)2’2]W+1 A(jw+2)+B A=2 2A+B=1 B=-3
2 3
XW) =2 Gwrap
X(t) = 26~ 2u(t) — 3te~2u(t)
W) (a+jw)?2  (a+jw)(a+ jw) L(W)Xe(W)
1 1
W= i oM = i w
x1(t) = e u(t), xo(t) = e u(t)
Using convolution property
X(t) = xq.(t) " %2(t)
X(t) <15 X(w)
X1 (1) Xa(t) < X (W) Xa(W)
7 ut) =11<0

X(t) = / e 2u(t)e 2Dyt — 1)dr { =

ut—-1)=1 t<rt
t

:/e’ath:te’aIu(t)

0
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Example 20: Find the F.T. of the function
X(t—to) = e "u(t —to)

SOLUTION :
If F[x(t)] = X(w)

then FTx(t —to)] = e~ MoX (w)

Example 21: Find the F.T. of the function
X(t) =[u(t+1) —u(t —1)]cos At

SOLUTION :
FT(cosat) = FT(ejZMZe_jm)
FT[1] = 2rd(w)
FT[e/"o!] = 2md(w — wp)
F[cos 2] = (1w — 2m) + Tid(W+ 211) (1)
1 .
Flut+1)—u(t—1)] :/e*iV“dt:_j%v(efjw_GJW) _ ZS%V @

-1
Fx(t)] = F[{u(t+1) —u(t —1)} cos 2t]
X(t) is multiplication of (1) and (2), so by using multiplicatigmoperty

XOY) < 5w Yaw) = 5 [ X@Yw-1dr

21 T om

X(W):%_[ /ZSTmTTtE)(W—Zn—T)+6(W+2ﬂ—T) dt

—00

X(W):/Sltﬂé(w—Zn—r)dH—/?6(W+2ﬂ—ﬂdr

—00

0

Since / X(1)3(t — to)dt = X(to)

—00

X(w) = sin(w— 2m) /(W — 211) 4 sin(w+ 211) / (W + 211)
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Example 22: Determine the Fourier transform of a triangular functiorslaswn in figure.

x(7)
A

-T T t

Fig. 2.24. Triangular pulse

SOLUTION :
x(2)
(0, 4)
@, [@
(-T7,0) (T,0) t
Equation of line(a) is
t
X(t) = A (? + 1)

Equation of line(b) is

Mathematically, we can writg(t) as

X(t) = A(% +1) [ult+T) — u(t)] + A (1- %) [u(t) —u(t—T)]

X(t) = 2T ut+T) —un)] + 21 - ofu) —u 1))
X(t) = Té{(tﬂ)(ﬂ) (t+T)u } ?{ T t)u(t)f(Tft)u(th)]}
) = 2 e ) —tu) ~Tun b+ 2 {Tuw e +re-1))
= 2frer ) —r - Tun b+ 2 {Tuw —r +re-))
:$Hr(t—i—T)—Zr(t)—H(t—T)H
i =2 e~ e+ (e



Fourier Series and Fourier Transform

1 -3<t<}
(1) = rectt) = { 0 otﬁerwise2

1 -3<t-5<%
_5) = 2= 2
rec(t—5) { 0 otherwise

11
<t<i

NI©

0 otherwise

1
rectt —5) = {

[e9]

—jwt [11/2
9/2 9/2
e B _ oW gojy-etll
- —jw jw

e 5iWaiW/2 _ g-5iwg—jw/2  pg-5iw (ejW/Z - efJ'W/Z)
jw - W2

—5jw . inw
_ 2e sin? _ g-5iw sin3
w 2

w
2

iw) — e 5iwg, (W
X(jw) = e s (3)
2.6 PROPERTIES OF CONTINUOUS-TIME FOURIER TRANSFORM
(1) Linearity
IFFT (xu(t)) = Xa(jw)

and FT(x(t)) = Xa(jw)
Then linearity property states that

FT(AXl(t) + BXZ(t)) = AXJ_(]W) + BXZ(jW)
whereA andB are constants.

Proof:

Letr(t) = Axy(t) + Bxa(t)

WMW=%M=/mem

0

:/(Axl(t)—i—sz(t))e*j"‘”dt

—00

125
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= / x(1)e 1 (“WTdr

F(x(t)) = X(=iw)

(4) Time shifting

If FT (x(t)) = X(

iw)
then FT(x(t —to)) =

e WoX (jw)
Proof:
Letr(t) = x(t —to)
R(jw):/r(t)e‘j‘“’tdt:/x(tfto)e‘j""tdt
R(jw) = FT(X(t —t0)) = / X(t — to)e~ "t
Lett—top=T1 dt =drt

00

FT (X(t —to)) = / X(T)e Mo+ g

—o0
00

= /x(r)e*j‘”te*j"“‘)dr
—o0

—e Mo / X(T)e "idt

FT (X(t —to)) = e ™oX (jw). Similarly, FT (x(t +to)) = el"oX(jw)
So FT(x(t £tg)) = e 1"™oX (jw)

(5) Frequency shifting
IFFT (x(t)) = X(jw)

FT (€"0'(t)) = X (j(w—wo))

Letr(t) = eWo'x(t)

FT (r(1)) = FT (e"'x(t)) = R(jw) = [ e'x(t)e ek

FT(e"ox(t)) = / x(t)e~I(W-Woltgg
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Letw—wg=w

0

= / x(t)e Widt

—00

FT (e"'x(t)) = X(jw) = X(j (w—wp))

Similarly, FT(e1"otx(t)) = X(j(W+wp))

We can write as Fe™"0'x(t)) = X(j(w=Fwo))

(6) Duality or symmetry property
IFFT (x(t)) = X(jw)
then FT(x(t)) = 2mx(—jw)

Proof:
We know thatx(t) = 2 [, X(jw)e/"dw
Replacing by —t, we get

oY)

X(—t) = i/X(jw)e*j‘"’tdw

—o00

oY)

omx(—t) = —E/X(jw)e’j""tdw

—00

[e9]

orx(—t) = /X(jw)e’j"‘”dw

—00

Interchanging by jw

21X(— jw) = /X(t)e’j"‘”dt

—00

2x(—jw) = FT(X(1))

(7) Convolution in time domain
IfFT (x1(t)) = Xe(jw) and FT(x2(t)) = Xa(jw)
then FT(x1(t)*X2(t)) = Xa(jw)Xa(jw)
i.e., convolution in time domain becomes multiplicatiorfiequency domain.
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Proof:

/ (/ xl(r)xz(t—r)dT) e "t
://xl o(t — T)dT & Mt

= /xl(r)dr/xz(t—r) e 1"t

Lett—t=0sodt=d O
FT[xl(t)*xz(t)]:/ ()dr/ o(0) & ME+0g

—00 —00

00 0

= /xl dr/xz(D)e W g=iwtg

—00

0

= /xl Ye J"‘"dT/Xg(D) e "Ud O

—00

FT X (t)"%2(t)] = X1 (jw) Xo(jw)

(8a) Integration in time domain

IFFT (x(t)) = ( w)
then FT( /', x(1)dt) = jw)
X(

Proof: Letr(t)= [, T)
Differentiating w.r.t.t

dr(t) d
. =X(t) = FT(x(t)) = FT(dt (t))
From differentiation in time domain

X(jw) = jwX(jw)

R(jW) = 5 X (W)

t
FT(r(t)) =FT (/ x(r)dT) = j%VX(JW)

— 00
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(8b) Differentiation in time domain
IFFT (x(t)) = X(jw)
then($x(t)) = jwx (jw)

Proof: We know thatx(t) = %{ / X (jw)e™dw. Differentiating both sides w.r.t.

—00

d 17 d ;
-~ - = : M aiwt
dtx(t) Zn/X(jW) (dte )dw

1 i
= — / jWX(]W)e dw

—00

l [ee]
2—/ (WX (jw))e"dw

d S .

GO =1 FT (X (jw))

yields FT($x(t)) = jwX(jw). On generalizing we get F(%x(t)) = (jw)"X(jw)
(9) Differentiation in frequency domain

IfFT (x(t)) = X(jw)
then FT(tx(t)) = j X (jw)

Proof: We know thatX (jw) = [ x(t)e~1"™dt
On differentiating both sides w.riv

(;?Nx(jw)_/wx(t) <£Ne—iwt> dt—— [ jtxe Mat

—00 —00

Multiplying both sides byj

]diwx(JW) /(tx(t))e_jwtdt sincejZ= —lor—j2—1

o X(jw) = FT{tx(0)

. d .
FTItx(t)] = | 5 X(1w)
(10) Convolution in frequency domain (multiplication in time domain (multiplication theorem))
If FT(x1(t)) = Xg(jw) and FT[xz(t)] = Xa(jw)

FT(xa(t)x(t) = %T(Xl(iw)*xz(iw))
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Proof:

E/w’x(t)zldt/w‘x(t)x

0

We know thatx(t) 21T[/X (jw)et ™ dw

—00

[oe]

Sox*(t) = %{ /X(jw)e*j"‘”dw

on putting (1)

_ /x(t) lle[/X*(jw)ei‘“”dw] dt

x(t)e" Mdt dw

Bl
—
%
E.
;3\8

:/|x ?|dt = /|XJW

Relation between Laplace Transform and Fourier Transform
Fourier transfornX(jw) of a signalx(t) is given as

[oe]

X(jw) = /x(t)e’j"‘”dt

—00

F.T. can be calculated onlyx{t) is absolutely integrable

= [ Ixt)fdt <o

Laplace transfornx(s) of a signalx(t) is given as

We know thats= o+ jw

/X e (O+iwWt gy

X(s) = / [x(t)e ] e ™t

—o00

t)dt

@)

)

@)

)

®3)

(4)
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Comparing (1) and (4), we find that L.T. ®ft) is basically the F.T. ofx(t)e~°!].

If s= jw, i.e.0 =0, then eqn. (4) becomegs) = [ x(t)e Mdt = X(jw)

Thus,X(s) = X(jw) wheno =0 ors= jw

This means L.T. is same as F.T. whes jw. The above equation shows that F.T. is special case of L.T.
Thus, L.T. provides broader characterization comparedTio $= jw indicates imaginary axis in complex
s-plane.

2.7 APPLICATIONS OF FOURIER TRANSFORM OF NETWORK ANALYSIS

Example 24: Determine the voltagé, () to a current source excitatiaft) = e tu(t) for the circuit shown
in figure.

+

1
l(t) 1Q — EF Vout(t)

Fig. 2.26.

SOLUTION :

Vi [l *
i(?) 1Q ZZ%F Vou(?)

i(t) =ia(t) +iz(t)

(= Youl0) 1 0%ult

iV
{SII’]CGI—R

i ~dv _ 1
andi = cG{ orv= z [idt

. 1 dVou (t)
t o - out
e u(t)_Vout(t)+2 p 1)
On taking thez-transform on both sides
1 . jwl _ (2+jw) .
1+jW_Vout(Jw){1+2}— 5 Vout (jw)
. 2 A B
Vout (JW) = - — = - -
ou (JW) A+ jweLjw  1+jw 2+ jw
. 2
Vou W)= 1w ™ 2 jw
A2+ jw) +B(1+ jw) =2
2A+B=2

A+B=0s5A=-B
2A-A=2, A=2B=-2
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Vo(jw) = - - :
o(jw) = 6(jW)2+7(jw)+1 - (6jW+1)(jW+1)
. 1/3 __A LB
Vo) = G i) Gwr ) Lijw ' Trjw
Vo(jw) = : : X

5(3+ijw) 5(1+jw)
Taking inverse Fourier transform, we get

Vo(t) = g (e’t/6 - e") ut) ®6)

Example 26: Determine the response of current in the network shown inZ&$(a) when a voltage having
the waveform shown in Fig. 2.28(b) is applied to it by using Hourier transform.

1Q v(t)
MW
() 1F—
0 b wt
() (b)
Fig. 2.28.

SOLUTION :
WaveformV (t) is defined as
V(t) =sint(u(t) —u(t —m)) Q)

1Q
W\
u(f) %) C(;)\' @ — IF

Leti(t) be the current in the loop. Applying KVL in loop

t t

V(t):1-i(t)+%/i(t)dt:i(t)+/i(t)dt @)

0 0
On taking Fourier transform of
. 1 g imw
YW= w1 Gz
Since FT sintu(t)] = (va)12+1
e i

FT[sintu(t —m)| = GwZil
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Solve using F.T. formula

viw = e ©
V(i) =1 () + 1 ()

Vi = (14 ) 1w = 5 )

(1) = V() @
W = YA ™) )

T wt1l (w21

|(jw) = 37 { S e }
MW= Swi1 \Gwzr1 " w21
jw 1 jw 1

~wr D (wEeD T wr D Gween S
[1(jw) l2(jw)
A Bjw+c

(W) = 51 Gwez D

~1/2  3(jw+1)
(jw+1)  ((jw)?2+1)
1

. 1 1 . 1 .
i(t) = —ée*tu(t) + 5 costut + ésmtét + ésmtu(t)

Since IFT{ ﬁm} = sintu(t)

) IFT(UWj)i"ZVH) = 3 sintu(t)
Using differential in time domain property
jw .
. jw 1 s
[ S R LW
20 = Gar ) (w1 ®

l2(jw) = I3(jw) - e ™

Since I3 =11(jw)
so i(t) = —%e‘tu(t) + % costu(t) + % sintd(t) + %sintu(t)
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From time shifting property FTX(t £tg)) = €510 x (jw)
i2(t) =ig(t—m)

1 n 1 1 1
=-5e (t >u(t—Tr)+Ecos(t—n)u(t—Tt)+§sm(t—n)6(t—rr)+§sm(t—n)u(t—n)

so  i(t)= % — [~e ' +cost +sint] u(t) + %sinté(t) + % —e T 4 cogt — 1) + sin(t — n)} ut — T+

%sin(t (- )

Example 27: For theRC circuit shown in figure.

o f

O CF 0

Fig. 2.29.

(a) Determine frequency response of the circuit.
(b) Find impulse response.

(c) Plot the magnitude and phase responsé&foe 1.

SOLUTION :
Applying KVL in loop (1)

i(t)dt 1)

andy(t) = é / i(t)dt 7
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A=B-C
. 1
H =
[RGw| 1+w?

H(jw) =1—(1+ jw)

0
—tan?! 1 tan tw= —tan tw

For different values o, we find|H (jw)| andH (jw)

S. No w [H(jw)]| H(jw)
1- —00 0 90
2— —50 0.0199 88.9
3— -20 0.0499 87.r
4— -10 0.099 84.3
5— -5 0.196 78.7
6— -2 0.447 63.4
7— -1 0.707 45
8— 0 1 0

9— 1 0.707 —45
10— 2 0.447 —63.4°
11- 5 0.196 —78.7°
12— 10 0.099 —84.3°
13— 20 0.0499 —87.1°
14— 50 0.0199 —88.9°
15— 0 0 -9

~50 —40 —30-20-10 0 10 20 30 40 50 w

Fig. 2.30. Magnitude plot frequency response of the circuit

139
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ZH(Gw)
4 900

1 450

50 —40 =30-20-10 | 910 20 30 40 50 w

—45°4

-90° 1

Fig. 2.31. Phase plot

Example 28: For the circuit shown in figure, determine the output voltege) to a voltage source excitation
Vit) = € 'u(t) using Fourier transform

Vinl) @ 17 8 )

Fig. 2.32.
SOLUTION :
SinceVin) = e"u(t) €
1
Vin(jw) = 1+ jW (2
Applying KVL in loop (1)
. di(t
Vinty = 2(t) +1- %
: di(t
Vi) = 2(t) + T(t) ()
di(t
Vo(t) = 1- %
di(t
Vo(t) = ) (4)
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Q3: (i) State and prove the following properties of Fourier sgri
(a) Time shifting property (b) Frequency shifting property
(i) What are Dirichlet’s conditions?

Q4: Find the fundamental periof, the fundamental frequenayw, and the Fourier series coefficierssof
the following periodic signal;

Fig. 2.3 P.
Q5: Obtain the Fourier series component of the periodic square\signals.

x(7)
1

=772 | -T/4 0 T4 |12 t

Fig. 2.4 P.

Q6: Determine the Fourier transform of the Gate function

x(?)
A

=172 T2 t

Fig. 2.5 P.

Q7: Determine the Fourier series representation of the signal

M) = t—t2for —m<t<m
~ 1 0 elsewhere



Fourier Seriesand Fourier Transform e 143

Q8: For the continuous-time periodic signal
X(t) = 2+ cod2mt /3] + 4 sin5mt /3]
determine the fundamental frequengyand the Fourier series coefficiel@s such that

x(t) = z C,elnwot

Nn=—oo0
Q9: Find the Fourier transform of the following signals:
@xt)=31) (B)xt)=1 (o)x(t)=sgn(t)  (d)x(t)=u(t)
(e) x(t) = exp(—at)u(t) (f) x(t) = cos|wot] sin [wot]
Q10: Show that the Fourier transform of re¢t—5) is Sa(w/2) exp(j5w). Sketch the resulting amplitude
and phase spectrum.

Q11: Find the inverse Fourier transform of spectrum shown in &gur
ZX(w)
/2

| X(w) |

—1/2

—Wo wWo W

(@) ()

Fig. 2.6 P.
Q12: Find the Fourier transform of the following waveform.

x(7)
1

Fig. 2.7 P.

Q13: State and prove duality property of CTFT.

Q14: Determine the Fourier transform of the signal
X(t) = {tu(t)*[u(t) —u(t — 1)]}, whereu(t) is unit step function ant denotes the convolution operation.
Q15: Show that the frequency response of a CTLTIS (&) = H (w)X(w)
whereX(w) = Fourier transform of the signa(t)
H(w) = Fourier transform of LTIS respon$gt)
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Q16: Find the Fourier transform of the signgt) shown in figure below.

x(7)
A

0 T 2T t

Fig. 2.8 P.

Q17: Determine the frequency resport$€jw) and impulse responsgt) for a stable CTLTIS characterized
by the linear constant coefficient differential equatiovegi as

d?y(t)/dt2 + 4dy(t) /dt + 3y(t) = dx(t)/dt + 2x(t)

Q18: Find the Fourier transform of the signglt) shown in figure below.

x(7)

Fig. 2.9 P.

Q19: If g(t) is a complex signal given by(t) = gr(t) + joi(t) whereg(t) andgi(t) are the real and
imaginary parts of(t) respectively. IfG(f) is the Fourier transform af(t), express the Fourier transform
of gr(t) andgi(t) in terms ofG( f).

Q20: Find the coefficients of the complex exponential Fouriefesefor a half wave rectified sine wave
defined by
X(t) = Asin (wgt), 0<t < T0/2
- 0, T0/2 <t<Ty
with x(t) = x(t + To)

Q21: (a) Show that the Fourier transform of the convolution of signals in the time domain can be given
by the product of the Fourier transform of the individualrgits in the frequency domain.

(b) Determine the Fourier transform of the signal

) = 3 [se+vroe-2+3 (143 )5+ (1-3)]
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Qs3:

Q4.

x(7)

N
R

T=1
W = 2mtrad/ sec

:u(
X2 — X1

y-y1 X=x)

X(t)=-2t+1
to+T
2
= / X(t) cosnwt dt
to

an=0

x(7)
1.0

=772 | -T/4 74 | T2

x

—~~

—

N

I
p——
|
=

—~ I

INEEINE

g
Il
Js\‘iﬂ [BN
\M—!
o
~+
+
bH\m\—i
0
=
o
=
|

|
-
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T T
*E /4 8m-[dt/zco 8ﬂ-[tdt
& =37 3T 3T
_T T
z 7
= i 33in2ﬂ[ sin@
&= 3 3

b, = 0, since even function

x(t)—}+} Ssinz—n sin4—n+§sin4—n }sinB—n—s—
T3 0T 3 3 2 3 2 3
Q5:
x(7)
A
=172 72 t

A-p<t<y
X(t) =
0 elsewhere

.
2

i 2A . wl AT . wT

X(jw) A/Te dt W SN = g sin—

2
2

X(if) = AT sincfT

Q6:
To = 21T
wo = 1;
T
1 2 —1¢
ao_gt/(t—t ) dt =

1 4
an = ﬁ/ (t—t?) cosntdt = —

—T

T
1 h ey _ 2=
b”_n/ (t—t%) sinntdt = -

—T
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Taking inverse Fourier transform

1/ 1— elwot
xi(t) = 51/ —j eMdw o
0
0 .
" 1— e IWot
X(t) = / j eMdw =
e 21t
X(t) = X (t) + Xa(t) = %(1—@%‘ +1- e it
1 2sirf Yot
=_—(2-2 = 2
2nt( COSWot) -
Q11:
x(7)
1.0
-b  -a 0 a b t
bbb for-b<t<-a
xt)=< 1 for—a<t<a
b for a<t<b
. 2
X(jw) = m(coswa—coswb)
Q12:

X(t) =tu(t)*[u(t) —u(t —1)]
x1(t) =tu(t) X2(t) = u(t) —u(t—1)
Differentiating in frequency domain property

FTI(X() = | X (W)

Xu(jw) =

(jw)?
/ 1

Xo(jw) = /1.e’i""tdt — S (1-eiw
0 W

X(jw) = Xa (jw)Xz(jw) = (1—e %)

1
(jw)

149
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Q13: Prove convolution in time domain property.

Q14:
x(?)
4 (4
0 T 2T ¢
(0,0
At 0<t<T
— T
X(t)_{A T<t<2T
A T 2T
X (jw) = T/te-imdt+A/e—imo|t
0 T
. T T . .
—jwt — jwt —jwt
X(J'W):é [te_ /—/e.dt] +A[e. 2T ]
T —jw jw —jw | T
0 0
A(TeM 1, e 1T _ g IwWT
== (M)A =
T{—jw+w2(e )}+ { “jw }
e - A ,
— T (o WT Y A WT (o jwWT
A{_jW+W2T (e 1)} e T (e T 1)
_ AT A et A At At
jw w2T w2T  jw jw
A (L _ L e
wT \w W
Q15:
dy(t)  dy(t) dx(t)
4 — 2 1
G A ) = 20 (1)

Taking Fourier transform on both sides
(JW)2Y (jw) +4(W)Y (jw) +3Y (jw) = (jw)X (jw) +2X(jw)

((Jw)?+4(jw) +3) Y (jw) = ((jw) +2) X (jw) 2
Frequency responseé(jw) = ;{(8\;\3 = (jw)ZZiZJL\J'NWJFB 3)
H(jw) = 2+ jw A B

Griw(lrjw  3+jw 1+jw
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, T
X(t) = Asinwgt for 0 <t < EO

T
=0 forzogtho
To
2
17 . A [/ —coswpt | To
=_— [ Asinwptdt = — | — | 2
CO TQO/ 0 To( Wo 0 )

A To A A
=——— |coswp- — — 1| = ———[cosm—1] = =
To%’;[ 02 } ol 1=

To

1 2
C,= —/Asinwote*J"WOtdt
To /

To
2

/(ejwot _ e*inWOt)e*jnWotdt

T 2iTo.
Jo0

To

2

A / (ejwot(lfn) _efjwot(n+1)) dt

~2iTo

J'lo 5

A ejWot(l—n) e—jWOt(rH'l) %
©2jTo \ jwo(1-n)  —jwo(n+1) |0

A [ewl-nY  oiwnin® g 1
i-n °© (n+1)  1-n n+1

~ 2jTowo

B A ej m(1-n) e jm(n+1) 1 1
S n+tl1 1-n n+1
A [T gmiM g 1 1
“Tam\1on T nx1  1on n+d

Sinceel™= —1

A [(—elm eimt g 1
41'[( 1-n n+11—nn+1>

A 2e—J'mT+ 2
S 4m\1-n2  1-n?

e 1My 1)
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Fourier Series and Fourier Transform

)= 3 (800 +ae-2+5(t+ 3 ) +5(1- 1))

Taking Fourier transform on both sides

Q19:

X(jw):/wx(t)ej""tdt (1)
X(jw):/w;(6(t+1)+6(t—1)+6<t+;)+6<t—;)>ethdt
X(jw):;(]oé(t—i—l) J‘Mdt+/ (t—1 J"‘”dt+/006( ) e 1"t

— 00 —00

Jofe-3)era)

Since FTo(t)) =1

So FT3(t+tg)) = e ™odt  {using time shifting property

. 1 ; i P w Fw
X(jw) = 5 (el""+e*"”+e’? +e*17)

: w
X(jw) = cosw+ cos;

OBJECTIVE TYPE QUESTIONS

Q1: If the Fourier transform of a functiox(t) is X(jw), thenX(jw) is defined as
(a) [Z,x(t)eMdt (b) /=, 2l g-imgy

(c) [Z.x(t)dt (d) [ x(t)e" Mdt
Q2: If X(]
(a) x(t)
(c) x(t) =

Q3: Fourier transform ok(t) =1 is
(a) 2rd(w) (b) TL3(W) (c) 3rtd(w) (d) 4118(W)

w) be the Fourier transform oft), then
= s S X(WeMdw  (B) x(t) = 5 [ X (jw)e Mdw
x oo X(jw)eMdw (d) x(t) = & [ |

Q4: Fourier transform ok(t —'to) is .
(@) e ™oX(jw)  (b) @™oX(jw)  (c) gX(iw)  (d) toe ™oX(jw)

e 153
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Q19: The trigonometric Fourier series of a periodic time functi@mve
(a) sine terms (b) cosine term
(c) both (a) and (b) (d) DC term
Q20: Fourier series is defined as
X(t) =a,+ ¥ (ancosnwot + by sinwpt)
n=1
(a) True (b) False

Answers: (1) d (2) a 3)a 4 a B)b
(6) c (M) a (8)a (9) a (10)d
(1) c (12)b (13)b (14) a (15) a
(16)a (17)e (18) c (19)c (20) a

UNSOLVED PROBLEMS
Q1: Show that the Fourier transform rft) = 8(t +2) 4 8(t) + 8(t — 2) is (14 2cos 2w).

Q2: Show that the inverse Fourier transform Xfjw) = 2md(w) + 1o(w — 411) 4 TO(W + 417) is X(t) =
1+ cos 4t.

Q3: Calculate the Fourier transform t# ', using the F.T. pair, Ffe "] = 2. Also find the Fourier
4t

transform ofm using duality property.
Q4: X(jw) = d(w)+d(w— 1) + &(w—>5); find IFT x(t) and show thax(t) is non-periodic.

Q5: Find the Fourier transform of the triangular pulse as shawfigure.

x(7)
1
=172 0 172 t
Fig. 2.10 P.
Ans. X(jw) = % sinc?(%)
Q6: Find the Fourier transform of(t) = rect(t/2). Ans. X(jw) = 2sincw

Q7: Find the Fourier transform of the signdl) = coswt by using the frequency shifting property.
Ans: X (jw) = T{o(w —wWp) + 0(W+Wp)]

Q8: Show that FT[sinwptu(t)] = W2W°W2 + %j[é(w+wo) —d(W—wp)].
2

jw

Q9: Find inverse Fourier transform &f(jw) = T

Ans.x(t) = & [te"tu(t)]
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Q10: Sketch and then find the Fourier transform of following signa

X1(jw) =2sincy cos 3§

x1(2)
@ x(t)=m(t+3)+m(t—3) Ans.(a) 1
-2 -1 1 2
Fig. 2.11 P.
x,(7)
2
(b) xe(t)=m(%)+m(L) Ans. (b) Tl
-2 -1 1 2 t
Fig. 2.12 P.

Xo(jw) = 4sinc2w+-2 sincw

Q11: Find the frequency respongéjw) of the RC circuit shown in figure. Plot the magnitude and phase

response foRC = 1

y(iw) 1

W) = w) = T4 jwRe

——A T
x(0) Rl c ¥
. T L

Fig. 2.13 P.

Q12: Find the Fourier series of the waveform shown in figure.

X(t) = _ﬁfor n=1357
jnmt

Ans. [x(jw)| = T

x(jw) = —tantw
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1 1 2
X(tT)t = — + =cos5t — — cos10
(tmg n+2 31

2
— —cos 15t
81

Q15: The output of a system is given by

X(t) = Asinwpt for 0<t<T
10 for m<t<2m

Determine trigonometric form of Fourier seriesxgf)

A A
AnNns. (t) = ;[ + E COint —

n
2

0

2A
)+n;n(1—n2)

COSFT[]



