
MATRIX ALGEBRA REVIEW

(

PRELIMINARIES

A matrix is a way of organizing information.

It is a rectangular array of elements arranged in rows and columns.  For example, the following matrix
A has m rows and n columns.

All elements can be identified by a typical element ija , where i=1,2,…,m denotes rows and j=1,2,…,n

denotes columns.

A matrix is of order (or dimension) m by n (also denoted as (m x n)).
A matrix that has a single column is called a column vector.
A matrix that has a single row is called a row vector.

TRANSPOSE
The transpose of a matrix or vector is formed by interchanging the rows and the columns.  A matrix of
order (m x n) becomes of order (n x m) when transposed.

For example, if a (2 x 3) matrix is defined by

 Then the transpose of A, denoted by A’, is now (3 x 2)

• AA =′′)(
• AkkA ′=′)( , where k is a scalar.
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SYMMETRIC MATRIX

When AA =′ , the matrix is called symmetric.  That is, a symmetric matrix is a square matrix, in that it
has the same number of rows as it has columns, and the off-diagonal elements are symmetric (i.e.

jandiallforaa jiij = ).

For example,

A special case is the identity matrix, which has 1’s on the diagonal positions and 0’s on the off-
diagonal positions.

The identity matrix is a diagonal matrix, which can be denoted by ),...,,( 21 naaadiag , where ia  is the
ith  element on the diagonal position and zeros occur elsewhere.  So, we can write the identity matrix as

)1,...,1,1(diagI = .

ADDITION AND SUBTRACTION
Matrices can be added and subtracted as long as they are of the same dimension.  The addition of
matrix A and matrix B is the addition of the corresponding elements of A and B.  So, BAC +=
implies that ijijij bac +=  for all i and j.

For example, if

Then

• ABBA ±=±
• )()( CBACBA ±±=±±
• BABA ′±′=′± )(
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MULTIPLICATION

If k is a scalar and A is a matrix, then the product of k times A is called scalar multiplication.  The
product is k times each element of A.  That is, if kAB = , then ijij kab =  for all i and j.

In the case of multiplying two matrices, such as ABC = , where neither A nor B are scalars, it must be
the case that

the number of columns of A = the number of rows of B

So, if A is of dimension (m x p) and B of dimension (p x n), then the product, C, will be of order (m x
n) whose ijth element is defined as

In words, the ijth element of the product matrix is found by multiplying the elements of the ith row of A,
the first matrix, by the corresponding elements of the jth column of B, the second matrix, and summing
the resulting product.  For this to hold, the number of columns in the first matrix must equal the
number of rows in the second.

For example,

• A (m x 1) column vector multiplied by a (1 x n) row vector becomes an (m x n) matrix.
• A (1 x m) row vector multiplied by a (m x 1) column vector becomes a scalar.
• In general, BAAB ≠ .
• But, AkkA =  if k is a scalar and A is a matrix.
• And, IAAI =  if A is a matrix and I is the identity matrix and conformable for multiplication.

The product of a row vector and a column vector of the same dimension is called the inner product
(also called the dot product), its value is the sum of products of the components of the vectors.  For
example, if j is a (T x 1) vector with elements 1, then the inner product, j’j, is equal to a constant T.

Note:  two vectors are orthogonal if their inner product is zero.

• ACABCBA +=+ )( .

• BCACCBA +=+ )( .

∑
=

=
p

k
kjikij bac

1

⎥
⎦

⎤
⎢
⎣

⎡ −
⎥
⎦

⎤
⎢
⎣

⎡
−

==
529

183

42

86
ADF

⎥
⎦

⎤
⎢
⎣

⎡
+−+−−+−

++−+
=

5*41*)2(2*4)8(*)2(9*43*)2(

5*81*62*8)8(*69*83*6

⎥
⎦

⎤
⎢
⎣

⎡ −
=

182430

463290



4

• CABBCA )()( = .

A matrix with elements all zero is called a null matrix.

• ABAB ′′=′)( .
• ABCABC ′′′=′)( .

TRACE OF A SQUARE MATRIX
The trace of a square matrix A, denoted by tr(A), is defined to be the sum of its diagonal elements.

nnaaaaAtr ++++= ...)( 332211

• AAtr =)( , if A is a scalar.

• )()( AtrAtr =′ , because A is square.

• )()( AtrkkAtr ⋅= , where k is a scalar.

• nItr n =)( , the trace of an identity matrix is its dimension.

• )()()( BtrAtrBAtr ±=± .

• )()( BAtrABtr = .

• ∑∑
= =

=′=′
n

i

n

j
ijaAAtrAAtr

1 1

2)()( .

DETERMINANT OF A SQUARE MATRIX

The determinant of a square matrix A, denoted by det(A) or A , is a uniquely defined scalar number

associated with the matrix.

i)  for a single element matrix (a scalar, 11aA = ), det(A) = 11a .

ii)  in the (2 x 2) case,
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the determinant is defined to be the difference of two terms as follows,

21122211 aaaaA −=

which is obtained by multiplying the two elements in the principal diagonal of A and then subtracting
the product of the two off-diagonal elements.

iii)  in the (3 x 3) case,
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iv)  for general cases, we start first by defining the minor of element ija  as the determinant of the

submatrix of A that arises when the ith row and the jth column are deleted and is usually denoted as

ijA .  The cofactor of the element ija  is ij
ji

ij Ac +−= )1( .  Finally, the determinant of an n x n matrix

can be defined as

nirowanyforcaA
n

j
ijij ,...,2,1

1

== ∑
=

.

njcolumnanyforca
n

i
ijij ,...,2,1

1

== ∑
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.

• AA =′

• 
db

ca
k

dkb

cka

kdb

kca
==

• AkkA n= , for scalar k and n x n matrix A.

• If any row (or column) of a matrix is a multiple of any other row (or column) then the determinant
is zero, e.g.

0)( =−== ababk
bb

aa
k

kbb

kaa

• If A is a diagonal matrix of order n, then nnaaaA �2211=
• If A and B are square matrices of the same order, then BAAB = .

• In general, BABA +≠+

RANK OF A MATRIX AND LINEAR DEPENDENCY

Rank and linear dependency are key concepts for econometrics.  The rank of any (m x n) matrix can be
defined (i.e., the matrix does not need to be square, as was the case for the determinant and trace) and
is inherently linked to the invertibility of the matrix.

The rank of a matrix A is equal to the dimension of the largest square submatrix of A that has a
nonzero determinant.  A matrix is said to be of rank r if and only if it has at least one submatrix of
order r with a nonzero determinant but has no submatrices of order greater than r with nonzero
determinants.

For example, the matrix
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That is, the largest submatrix of A whose determinant is not zero is of order 3.

The concept of rank also can be viewed in terms of linear dependency.  A set of vectors is said to be
linearly dependent if there is a nontrivial combination (i.e., at least one coefficient in the combination
must be nonzero) of the vectors that is equal to the zero vector.  More precisely, denote n columns of
the matrix A as naaa ,,, 21 � .  This set of these vectors is linearly dependent if and only if there exists

a set of scalars },,,{ 21 nccc � , at least one of which is not zero, such that 0aaa =+++ nnccc �2211 .

In the above example, the columns of the matrix A are linearly dependent because,

0=
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If a set of vectors is not linearly dependent, then it is linearly independent.  Also, any subset of a
linearly independent set of vectors is linearly independent.

In the above example, the first three columns of A are linearly independent, as are the first two
columns of A.  That is, we cannot find a set of scalars (with at least one nonzero) such that the linear
combination of scalars and columns equals the zero vector.

The connection between linear dependency and the rank of a matrix is as follows:  the rank of a
matrix A may be defined as the maximum number of linearly independent columns or rows of A.

In other words, the maximum number of linearly independent columns is equal to the maximum
number of linearly independent rows, each being equal to the rank of the matrix.  If the maximum
number of linearly independent columns (or rows) is equal to the number of columns, then the matrix
has full column rank.  Additionally, if the maximum number of linearly independent rows (or
columns) is equal to the number of rows, then the matrix has full row rank.  When a square matrix A
does not have full column/row rank, then its determinant is zero and the matrix is said to be singular.
When a square matrix A has full row/column rank, its determinant is not zero, and the matrix is said to
be nonsingular (and therefore invertible).

• Full rank (nonsingular matrix) ⇔  0A ≠   ⇔  A is invertible.
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Furthermore, the maximum number of linearly independent (m x 1) vectors is m.  For example,
consider the following set of two linearly independent vectors,
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where 21 bandb  can be any numbers, then the three unknown scalars 321 ,, candcc  can always be
found by solving the following set of equations,
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In other words, the addition of any third vector will result in a (2 x 3) matrix that is not of full rank and
therefore not invertible.

Generally speaking, this is because any set of m linearly independent (m x 1) vectors are said to span
m-dimensional space.  This means, by definition, that any (m x 1) vector can be represented as a linear
combination of the m vectors that span the space.  The set of m vectors therefore is also said to form a
basis for m-dimensional space.

• nIrank n =)(

• )()( ArankkArank = , where k is a nonzero constant

• )()( ArankArank =′
• If A is an (m x n) matrix, then },min{)( nmArank ≤ .
• If A and B are matrices, then )}(),(min{)( BrankArankABrank ≤ .

• If A is an (n x n) matrix, then nArank =)(  if and only if A is nonsingular; nArank <)(  if and
only if A is singular.

There are operations on the rows/columns of a matrix that leave its rank unchanged:

• Multiplication of a row/column of a matrix by a nonzero constant.
• Addition of a scalar multiple of one row/column to another row/column.
• Interchanging two rows/columns.

INVERSE OF A MATRIX

The inverse of a nonsingular (n x n) matrix A is another (n x n) matrix, denoted by A-1, that satisfies
the following equalities: IAAAA == −− 11 . The inverse of a nonsingular (n x n) matrix is unique.

The inverse of a matrix A in terms of its elements can be obtained from the following formula:
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Note that C’ is the transpose of the matrix of cofactors of A as defined in the section on determinants.
C’ is also called the adjoint of A.

For example, let
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• II =−1

• AA =−− 11 )(

• )()( 11 ′=′ −− AA

• If A is nonsingular, then 1−A  is nonsingular.
• If A and B are nonsingular, then 111)( −−− = ABAB .

SOLUTIONS FOR SYSTEMS OF SIMULTANEOUS LINEAR EQUATIONS

Consider the following system of linear equations: bAx = where A is a (m x n) matrix of known
coefficients, x is a (n x 1) vector of unknown variables, and b is a (m x 1) vector of known coefficients.

We want to find the conditions under which: 1) the system has no solution, 2) the system has infinitely
many solutions, 3) the system has a unique solution.  Define the matrix A|b as the augmented matrix of
A.  This is just the matrix A with the b vector attached on the end.  The dimension of A|b is therefore
(m x (n+1)).

Succinctly put, the conditions for the three types of solutions are as follows.  (Note: there are numerous
ways of characterizing the solutions, but we will stick to the simplest representation):

1. The system has no solution if rank(A|b) > rank(A).
2. The system has infinitely many solutions if rank(A|b) = rank(A) and rank(A) < n.
3. The system has a unique solution if rank(A|b) = rank(A) and rank(A) = n.

Let’s look at examples for each case.

Case 1:  No Solution
Intuition: if rank(A|b) > rank(A), then b is not in the space spanned by A; so b cannot be represented as
a linear combination of A; so there is no x that solves (Ax = b); so there is no solution.
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Consider the system,
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If we attempt to solve for 1x  in the first equation and substitute the result into the second equation, the
resulting equality is 916 = , which is a contradiction.

Case 2:  Infinitely Many Solutions
Intuition: if rank(A|b) = rank(A), then b is in the space spanned by A; so b can be represented as a
linear combination of A; so there exists an x that solves (Ax = b).  But because rank(A) < n, there are
more variables than equations.  This gives us “free variables” and therefore multiple solutions, one
associated with each choice of values for the free variables.

Consider the following system of equations
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In this case, rank(A|b) = rank(A), but the rank is less than the number of unknown variables (n).  Also
notice that each equation is just some linear combination of the other two, so we really have only one
equation and two unknowns.  There are infinitely many solutions that can solve this system, including
(4 0)’, (2 1)’, (0 2)’.
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Case 3:  Unique Solution
Intuition: if rank(A|b) = rank(A), then b is in the space spanned by A; so b can be represented as a
linear combination of A; so there exists an x that solves (Ax = b).  Because rank(A) = n, there are equal
numbers of variables and equations.  This gives us no “free variables” and therefore a single solution.

Consider the following system,
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So, rank(A|b) = rank(A) = 2 = n < m.  There is full column rank, and the system can be uniquely
solved.  In fact, any two independent equations can be used to solve for the x’s.  The solution is

.1,2 21 == xx

In econometrics, we often deal with square matrices, so the following is important for us:

• If A is a square matrix (m = n) and nonsingular, then bAx 1−=  is the unique solution.

KRONECKER PRODUCT
Let A be an (M x N) matrix and B be a (K x L) matrix.  Then the Kronecker product (or direct
product) of A and B, written as BA ⊗ , is defined as the (MK x NL) matrix
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• ABBA ⊗≠⊗ ,
• BABA ′⊗′=′⊗ )(
• BDACDCBA ⊗=⊗⊗ ))((

• 111)( −−− ⊗=⊗ BABA
• CABACBA ⊗+⊗=+⊗ )(

VECTOR AND MATRIX DIFFERENTIATION
In least squares and maximum likelihood estimation, we need to take derivatives of the objective
function with respect to a vector of parameters.

Let a function relating y, a scalar, to a set of variables nxxx ,,, 21 �  be ),,,( 21 nxxxfy �=  or

)(xfy = , where x is an (n x 1) column vector.  (Notice that x is in bold to indicate a vector.)

The gradient of y is the derivatives of y with respect to each element of x as follows
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Notice the matrix of derivatives of y is a column vector because y is differentiated with respect to x, an
(n x 1) column vector.

The same operations can be extended to derivatives of an (m x n) matrix X, such as
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Notice in this case, the matrix of derivatives is an (m x n) matrix (the same dimension as X).

If, instead, y is an (m x 1) column vector of miyi ,...,2,1, =  and x is a (n x 1) column vector of

njx j ,...,2,1, = , then the first derivatives of y with respect to x can be represented as an (m x n)

matrix, called the Jacobian matrix of y with respect to x’:
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Aside:  when differentiating vectors and matrices, note the dimensions of the independent variable (y)
and the dependent variables (x).  These will determine if the differentiation will entail the transpose of
a matrix.  In the above example, the first column of the resulting (m x n) matrix is the derivative of the
vector of miyi ,...,2,1, =  with respect to the first 1x .  The second column is the derivative with respect

to 2x  and so on.  Also note that the first row is the derivative of 1y  with respect to the vector x′  (a (1 x
n) row vector).  Therefore because x is a column vector, we need to transpose it to represent the
derivative of the m observations of y (down the column) with respect to the n unknown x variables
(across the row).  The y vector does not need to be transposed because y is represented along the
column of the resulting Jacobian matrix.

If we turn back to the scalar case of y, the second derivatives of y with respect to the column vector x
are defined as follows.
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⎢
⎢
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∂∂
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′∂∂
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∂
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∂

∂∂
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∂∂
∂

∂
∂

∂∂
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∂

∂
∂
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xx
y

x
y

ji xx

y

�

����

�

�

xx

This matrix is symmetric and is called the Hessian matrix of y.

Note that the Hessian matrix is just the second derivative of the gradient with respect to the x vector.
We need to transpose the x vector when taking the second derivative because for the Hessian, we are
taking the derivative of the gradient (a vector) with respect to each x variable.  So, the first column is
the gradient differentiated with respect to 1x , and the second column is the gradient differentiated with

respect to 2x  and so on.  So, we need to differentiate the gradient with respect to x’ to order these
derivatives across the rows of the resulting matrix.
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Based on the previous definitions, the rules of derivatives in matrix notation can be established for
reference.  Consider the following function xc′=z , where c is a (n x 1) vector and does not depend on
x, and x is an (n x 1) vector, and z is a scalar.  Then

c
xc =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
∂

′∂=
∂
∂

∂
∂

∂
∂

∂
∂

nx
z

x
z

x
z

c

c

c

z

n

��

2

1

2

1

xx

If xCz ′= , where C is an (n x n) matrix and x is an (n x 1) vector, then

( ) C
C ==

∂
′∂

=
∂

′∂
n21 ccc

x
�

xx

z

where ic  is the ith column (remember c is a vector) of C.

The following formula for the quadratic form xx Az ′=  is also useful (for any (n x n) matrix A),

xxx
xx

A)A(A
A

+′=+′=
∂
′∂

=
∂
∂

A
z

xx
.  The proof of this result is given in the appendix.

If A is a symmetric matrix (A = A’), then

x
xx

A2
A =

∂
′∂
x

For the second derivatives for any square matrix A,

A
A2

′+=
′∂∂

′∂
A

x
x)x(

x

and if A = A’ (if A is symmetric), then

2A
A2

=
′∂∂

′∂
x

x)x(
x

Some other rules (x is a scalar, unless noted otherwise):

• yx
yx ′=

∂
′∂
B
B

, where x and y are (n x 1) column vectors and B is an (n x n) matrix

• I
Atr =

∂
∂

A
)(
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• 1)(
A

−′=
∂
∂

AA
A

• 1)(
A

ln −′=
∂

∂
A

A

• B
A

A
AB

⎟
⎠
⎞⎜

⎝
⎛

∂
∂+⎟

⎠
⎞⎜

⎝
⎛

∂
∂=

∂
∂

xx

B

x

• 11
1

x
−−

−

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂=

∂
∂

A
x

A
A

A

Since this review was by no means complete, if you want to learn more about matrix algebra, the
following are good references:

Anton, Howard (1994), Elementary Linear Algebra, 7th edition, New York:  John Wiley & Sons.

The math behind it all.  Check out chapters 1, 2, 5.6.

Judge, George G., R. Carter Hill, William E. Griffiths, Helmut Lutkepohl, and Tsoung-Chao Lee
(1988), Introduction to the Theory and Practice of Econometrics, 2nd Edition, New York: John
Wiley & Sons, Appendix A.

These notes follow the Appendix fairly closely.

Leon, Steven J. (1994), Linear Algebra with Applications, 4th edition, New Jersey: Prentice Hall.

Simon, Carl P. and Lawrence Blume (1994), Mathematics for Economists, New York:  W.W. Norton.

Look at chapters 6 – 9, & 26.
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APPENDIX

Claim:  xxx
xx

A)A(A
A

+′=+′=
∂
′∂

=
∂
∂

A
z

xx

Proof:

Write out the quadratic form for an (n x n) matrix A,
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Now differentiate this with respect to the vector x,

But this can be rewritten as,
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or

xA)A( +′=
∂
∂
x

z

If A is symmetric, then ji,allforaa jiij = , so

xA2=
∂
∂
x

z

This also holds if n = n +1, so, by induction, the result holds for any (n x n) matrix.



Lecture 11: Eigenvalues and Eigenvectors
De…nition 11.1. Let A be a square matrix (or linear transformation). A number λ is

called an eigenvalue of A if there exists a non-zero vector ~u such that

A~u = λ~u . (1)

In the above de…nition, the vector ~u is called an eigenvector associated with this eigenvalue
λ. The set of all eigenvectors associated with λforms a subspace, and is called the eigenspace
associated with λ. Geometrically, if we view any n £ n matrix A as a linear transformation
T. Then the fact that ~u is an eigenvector associated with an eigenvalue λ means ~u is an
invariant direction under T. In other words, the linear transformation T does not change
the direction of ~u : ~u and T~u either have the same direction (λ > 0) or opposite direction
(λ< 0). The eigenvalue is the factor of contraction (jλj < 1) or extension (jλj > 1).

Remarks. (1) ~u 6= ~0 is crucial, since ~u = ~0 always satis…es Equ (1). (2) If ~u is an
eigenvector for λ, then so is c~u for any constant c. (3) Geometrically, in 3D, eigenvectors of
A are directions that are unchanged under linear transformation A.

We observe from Equ (1) that λ is an eigenvalue i¤ Equ (1) has a non-trivial solution.
Since Equ (1) can be written as

(A ¡ λI) ~u = A~u ¡ λ~u = ~0, (2)

it follows λ is an eigenvalue i¤ Equ (2) has a non-trivial solution. By the inverse matrix
theorem, Equ (2) has a non-trivial solution i¤

det (A ¡ λI) = 0. (3)

We conclude that λ is an eigenvalue i¤ Equ (3) holds. We call Equ (3) "Characteristic
Equation" of A. The eigenspace, the subspace of all eigenvectors associated with λ, is

eigenspace = Null (A ¡ λI) .

² Finding eigenvalues and all independent eigenvectors:

Step 1. Solve Characteristic Equ (3) for λ.
Step 2. For each λ, …nd a basis for the eigenspace Null (A ¡ λI) (i.e., solution set of Equ

(2)).
Example 11.1. Find all eigenvalues and their eigenspace for

A =

·
3 ¡2
1 0

¸
.

Solution:

A ¡ λI =

·
3 ¡2
1 0

¸
¡ λ

·
1 0
0 1

¸
=

·
3 ¡2
1 0

¸
¡

·
λ 0
0 λ

¸
=

·
3¡ λ ¡2
1 ¡λ

¸
.

1



The characteristic equation is

det (A ¡ λI) = (3¡ λ) (¡λ)¡ (¡2) = 0,
λ2 ¡ 3λ+ 2 = 0,

(λ¡ 1) (λ¡ 2) = 0.

We …nd eigenvalues
λ1 = 1, λ2 = 2.

We next …nd eigenvectors associated with each eigenvalue. For λ1 = 1,

~0 = (A ¡ λ1I) ~x =

·
3¡ 1 ¡2
1 ¡1

¸·
x1
x2

¸
=

·
2 ¡2
1 ¡1

¸ ·
x1
x2

¸
,

or
x1 = x2.

The parametric vector form of solution set for (A ¡ λ1I)~x = ~0 :

~x =

·
x1
x2

¸
=

·
x2
x2

¸
= x2

·
1
1

¸
.

basis of Null (A ¡ I) :

·
1
1

¸
.

This is only (linearly independent) eigenvector for λ1 = 1.
The last step can be done slightly di¤erently as follows. From solutions (for (A ¡ λ1I) ~x =

~0 )
x1 = x2,

we know there is only one free variable x2. Therefore, there is only one vector in any basis. To
…nd it, we take x2 to be any nonzero number, for instance, x2 = 1, and compute x1 = x2 = 1.
We obtain

λ1 = 1, ~u1 =

·
x1
x2

¸
=

·
1
1

¸
.

For λ2 = 2, we …nd

~0 = (A ¡ λ2I) ~x =

·
3¡ 2 ¡2
1 ¡2

¸·
x1
x2

¸
=

·
1 ¡2
1 ¡2

¸ ·
x1
x2

¸
,

or
x1 = 2x2.

To …nd a basis, we take x2 = 1. Then x1 = 2, and a pair of eigenvalue and eigenvector

λ2 = 2, ~u2 =

·
2
1

¸
.

2



Example 11.2. Given that 2 is an eigenvalue for

A =

244 ¡1 6
2 1 6
2 ¡1 8

35 .

Find a basis of its eigenspace.
Solution:

A ¡ 2I =
244¡ 2 ¡1 6

2 1¡ 2 6
2 ¡1 8¡ 2

35 =
242 ¡1 6
2 ¡1 6
2 ¡1 6

35 !
242 ¡1 6
0 0 0
0 0 0

35 .

Therefore, (A ¡ 2I)~x = ~0 becomes

2x1 ¡ x2 + 6x3 = 0, or x2 = 2x1 + 6x3, (4)

where we select x1 and x3 as free variables only to avoid fractions. Solution set in parametric
form is

~x =

24x1
x2
x3

35 =
24 x1
2x1 + 6x3

x3

35 = x1

2412
0

35+ x3

2406
1

35 .

A basis for the eigenspace:

~u1 =

2412
0

35 and ~u2 =

2406
1

35 .

Another way of …nding a basis for Null (A ¡ λI) = Null (A ¡ 2I) may be a little easier.
From Equ (4), we know that x1 an x3 are free variables. Choosing (x1, x3) = (1, 0) and
(0, 1) , respectively, we …nd

x1 = 1, x3 = 0 =) x2 = 2 =) ~u1 =

2412
0

35

x1 = 0, x3 = 1 =) x2 = 6 =) ~u2 =

2406
1

35 .

Example 11.3. Find eigenvalues: (a)

A =

243 ¡1 6
0 0 6
0 0 2

35 , A ¡ λI =

243¡ λ ¡1 6
0 ¡λ 6
0 0 2¡ λ

35 .

det (A ¡ λI) = (3¡ λ) (¡λ) (2¡ λ) = 0

3



The eigenvalues are 3, 0, 2, exactly the diagonal elements. (b)

B =

244 0 0
2 1 0
1 0 4

35 , B ¡ λI =

244¡ λ 0 0
2 1¡ λ 0
1 0 4¡ λ

35
det (B ¡ λI) = (4¡ λ)2 (1¡ λ) = 0.

The eigenvalues are 4, 1, 4 (4 is a double root), exactly the diagonal elements.
Theorem 11.1. (1) The eigenvalues of a triangle matrix are its diagonal elements.
(2) Eigenvectors for di¤erent eigenvalues are linearly independent. More precisely, sup-

pose that λ1, λ2, ..., λp are p di¤erent eigenvalues of a matrix A. Then, the set consisting
of

a basis of Null (A ¡ λ1I) , a basis of Null (A ¡ λ2I) , ..., a basis of Null (A ¡ λpI)

is linearly independent.
Proof. (2) For simplicity, we assume p = 2 : λ1 6= λ2 are two di¤erent eigenvalues. Suppose
that ~u1 is an eigenvector of λ1 and ~u2 is an eigenvector of λ2 To show independence, we need
to show that the only solution to

x1~u1 + x2~u2 = ~0

is x1 = x2 = 0. Indeed, if x1 6= 0, then

~u1 =
x2
x1

~u2. (5)

We now apply A to the above equation. It leads to

A~u1 =
x2
x1

A~u2 =) λ1~u1 =
x2
x1

λ2~u2. (6)

Equ (5) and Equ (6) are contradictory to each other: by Equ (5),

Equ (5) =) λ1~u1 =
x2
x1

λ1~u2

Equ (6) =) λ1~u1 =
x2
x1

λ2~u2,

or
x2
x1

λ1~u2 = λ1~u1 =
x2
x1

λ2~u2.

Therefor λ1 = λ2, a contradiction to the assumption that they are di¤erent eigenvalues.

² Characteristic Polynomials

4



We know that the key to …nd eigenvalues and eigenvectors is to solve the Characteristic
Equation (3)

det (A ¡ λI) = 0.

For 2£ 2 matrix,

A ¡ λI =

·
a ¡ λ b

c d ¡ λ

¸
.

So

det (A ¡ λI) = (a ¡ λ) (d ¡ λ)¡ bc

= λ2 + (¡a ¡ d)λ+ (ad ¡ bc)

is a quadratic function (i.e., a polynomial of degree 2). In general, for any n £ n matrix A,

A ¡ λI =

2664
a11 ¡ λ a12 ¢ ¢ ¢ a1n

a21 a22 ¡ λ ¢ ¢ ¢ a2n
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
an1 an2 ¢ ¢ ¢ ann ¡ λ

3775 .

We may expand the determinant along the …rst row to get

det (A ¡ λI) = (a11 ¡ λ) det

24a22 ¡ λ ¢ ¢ ¢ a2n
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
an2 ¢ ¢ ¢ ann ¡ λ

35+ ...

By induction, we see that det (A ¡ λI) is a polynomial of degree n.We called this polynomial
the characteristic polynomial of A. Consequently, there are total of n (the number of rows
in the matrix A) eigenvalues (real or complex, after taking account for multiplicity). Finding
roots for higher order polynomials may be very challenging.

Example 11.4. Find all eigenvalues for

A =

2664
5 ¡2 6 ¡1
0 3 ¡8 0
0 0 5 4
0 0 1 1

3775 .

Solution:

A ¡ λI =

2664
5¡ λ ¡2 6 ¡1
0 3¡ λ ¡8 0
0 0 5¡ λ 4
0 0 1 1¡ λ

3775 ,

det (A ¡ λI) = (5¡ λ) det

243¡ λ ¡8 0
0 5¡ λ 4
0 1 1¡ λ

35
= (5¡ λ) (3¡ λ) det

·
5¡ λ 4
1 1¡ λ

¸
= (5¡ λ) (3¡ λ) [(5¡ λ) (1¡ λ)¡ 4] = 0.

5



There are 4 roots:

(5¡ λ) = 0 =) λ= 5

(3¡ λ) = 0 =) λ= 3

(5¡ λ) (1¡ λ)¡ 4 = 0 =) λ2 ¡ 6λ+ 1 = 0

=) λ=
6§ p

36¡ 4
2

= 3§ 2p2.

We know that we can computer determinants using elementary row operations. One may
ask: Can we use elementary row operations to …nd eigenvalues? More speci…cally, we have

Question: Suppose that B is obtained from A by elementary row operations. Do A and
B has the same eigenvalues? (Ans: No)

Example 11.5.

A =

·
1 1
0 2

¸
R2+R1!R2!

·
1 1
1 3

¸
= B

A has eigenvalues 1 and 2. For B, the characteristic equation is

det (B ¡ λI) =

·
1¡ λ 1
1 3¡ λ

¸
= (1¡ λ) (3¡ λ)¡ 1 = λ2 ¡ 4λ+ 2.

The eigenvalues are

λ=
4§ p

16¡ 8
2

=
4§ p

8

2
= 2§

p
2.

This example show that row operation may completely change eigenvalues.
De…nition 11.2. Two n £ n matrices A and B are called similar, and is denoted as

A » B, if there exists an invertible matrix P such that A = PBP¡1.
Theorem 11.2. If A and B are similar, then they have exact the same characteristic

polynomial and consequently the same eigenvalues.
Indeed, if A = PBP¡1, then P (B ¡ λI)P¡1 = PBP¡1 ¡ λPIP¡1 = (A ¡ λI) . There-

fore,

det (A ¡ λI) = det
¡
P (B ¡ λI)P¡1¢ = det (P ) det (B ¡ λI) det

¡
P¡1¢ = det (B ¡ λI) .

Example 11.6. Find eigenvalues of A if

A » B =

2664
5 ¡2 6 ¡1
0 3 ¡8 0
0 0 5 4
0 0 0 4

3775 .

Solution: Eigenvalues of B are λ= 5, 3, 5, 4. These are also the eigenvalues of A.

6



Caution: If A » B, and if λ0 is an eigenvalue for A and B, then an corresponding
eigenvector for A may not be an eigenvector for B. In other words, two similar matrices A
and B have the same eigenvalues but di¤erent eigenvectors.

Example 11.7. Though row operation alone will not preserve eigenvalues, a pair of
row and column operation do maintain similarity. We …rst observe that if P is a type 1
elementary matrix (row replacement) ,

P =

·
1 0
a 1

¸
aR1+R2!R2Ã¡

·
1 0
0 1

¸
,

then its inverse P¡1 is a type 1 (column) elementary matrix obtained from the identity
matrix by an elementary column operation that is of the same kind with "opposite sign" to
the previous row operation, i.e.,

P¡1 =
·
1 0

¡a 1

¸
C1¡aC2!C1Ã¡

·
1 0
0 1

¸
.

We call the column operation
C1 ¡ aC2 ! C1

is "inverse" to the row operation
R1 + aR2 ! R2.

Now we perform a row operation on A followed immediately by the column operation
inverse to the row operation

A =

·
1 1
0 2

¸
R1+R2!R2!

·
1 1
1 3

¸
(left multiply by P )

C1¡C2!C1!
·
0 1

¡2 3

¸
= B (right multiply by P¡1.)

We can verify that A and B are similar through P (with a = 1)

PAP¡1 =
·
1 0
1 1

¸·
1 1
0 2

¸·
1 0

¡1 1

¸
=

·
1 1
1 3

¸·
1 0

¡1 1

¸
=

·
0 1

¡2 3

¸
.

Now, λ1 = 1 is an eigenvalue. Then,

(A ¡ 1)~u =
·
1¡ 1 1
0 2¡ 1

¸ ·
1
0

¸
=

·
0 1
0 1

¸·
1
0

¸
=

·
0
0

¸
=) ~u =

·
1
0

¸
is an eigenvector for A.

7



But

(B ¡ 1)~u =
·
0¡ 1 1
¡2 3¡ 1

¸ ·
1
0

¸
=

·¡1 1
¡2 2

¸·
1
0

¸
=

·¡1
¡2

¸
=) ~u =

·
1
0

¸
is NOT an eigenvector for B.

In fact,

(B ¡ 1)~v =
·¡1 1
¡2 2

¸ ·
1

¡1
¸
=

·
0
0

¸
.

So, ~v =

·
1

¡1
¸

is an eigenvector for B.

This example shows that

1. Row operation alone will not preserve eigenvalues.

2. Two similar matrices share the same characteristics polynomial and same eigenvalues.
But they have di¤erent eigenvectors.

² Homework #11.

1. Find eigenvalues if

(a) A »

2664
¡1 2 8 ¡1
0 2 10 0
0 0 ¡1 4
0 0 0 3

3775 .

(b) B »

2664
¡1 2 8 ¡1
1 2 10 0
0 0 1 4
0 0 0 2

3775
2. Find eigenvalues and a basis of each eigenspace.

(a) A =

·
4 ¡2

¡3 9

¸
.

(b) B =

24 7 4 6
¡3 ¡1 ¡8
0 0 1

35 .

8



3. Find a basis of the eigenspace associated with eigenvalue λ= 1 for

A =

2664
1 2 4 ¡1
1 2 ¡3 0
0 0 1 2
0 0 0 1

3775 .

4. Determine true or false. Reason your answers.

(a) If A~x = λ~x, then λ is an eigenvalue of A.

(b) A is invertible i¤ 0 is not an eigenvalue.

(c) If A » B, then A and B has the same eigenvalues and eigenspaces.

(d) If A and B have the same eigenvalues, then they have the same characteristic
polynomial.

(e) If detA = detB, then A is similar to B.

9



Section 1.6 

Solid Mechanics Part III                                                                                Kelly 30

1.6 Vector Calculus 1 - Differentiation 
 
Calculus involving vectors is discussed in this section, rather intuitively at first and more 
formally toward the end of this section.  
 
 
1.6.1 The Ordinary Calculus 
 
Consider a scalar-valued function of a scalar, for example the time-dependent density 
of a material )(t  .  The calculus of scalar valued functions of scalars is just the 
ordinary calculus.  Some of the important concepts of the ordinary calculus are reviewed 
in Appendix B to this Chapter, §1.B.2. 
 
 
1.6.2 Vector-valued Functions of a scalar 
 
Consider a vector-valued function of a scalar, for example the time-dependent 
displacement of a particle )(tuu  .  In this case, the derivative is defined in the usual 
way, 
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which turns out to be simply the derivative of the coefficients1, 
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Partial derivatives can also be defined in the usual way.  For example, if u is a function of 
the coordinates, ),,( 321 xxxu , then 
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Differentials of vectors are also defined in the usual way, so that when 321 ,, uuu  undergo 

increments 332211 ,, uduuduudu  , the differential of u is 

 

332211 eeeu dududud   

 
and the differential and actual increment u  approach one another as 

0,, 321  uuu . 

 
 
 

                                                 
1 assuming that the base vectors do not depend on t 
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Space Curves 
 
The derivative of a vector can be interpreted geometrically as shown in Fig. 1.6.1: u  is 
the increment in u consequent upon an increment t  in t.  As t changes, the end-point of 
the vector )(tu  traces out the dotted curve   shown – it is clear that as 0t , u  
approaches the tangent to  , so that dtd /u  is tangential to  .  The unit vector tangent to 
the curve is denoted by τ : 
 

dtd

dtd

/

/

u

u
τ         (1.6.1) 

 

 
 

Figure 1.6.1: a space curve; (a) the tangent vector, (b) increment in arc length 
 
Let s be a measure of the length of the curve  , measured from some fixed point on  .  
Let s  be the increment in arc-length corresponding to increments in the coordinates, 

 T321 ,, uuu u , Fig. 1.6.1b.  Then, from the ordinary calculus (see  Appendix 

1.B),  
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so that 
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Thus the unit vector tangent to the curve can be written as 
 

ds

d

dtds

dtd uu
τ 

/

/
     (1.6.3) 

 
If u is interpreted as the position vector of a particle and t is interpreted as time, then 

dtd /uv   is the velocity vector of the particle as it moves with speed dtds /  along  . 
 
Example (of particle motion) 
 
A particle moves along a curve whose parametric equations are 2

1 2tx  , ttx 42
2  , 

533  tx  where t is time.  Find the component of the velocity at time 1t  in the 

direction 321 23 eeea  . 

 
Solution 
 
The velocity is 
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The component in the given direction is av ˆ , where â  is a unit vector in the direction of 

a, giving 7/148 . 
■  

 
Curvature 
 
The scalar curvature )(s  of a space curve is defined to be the magnitude of the rate of 
change of the unit tangent vector: 
 

2

2

)(
ds

d

ds

d
s

uτ
                                                (1.6.4) 

 
Note that τ  is in a direction perpendicular to τ , Fig. 1.6.2.  In fact, this can be proved 
as follows: since τ  is a unit vector, ττ   is a constant ( 1 ), and so   0/  dsd ττ , but 
also,  
 

 
ds

d

ds

d τ
τττ  2  

 
and so τ  and dsd /τ  are perpendicular.  The unit vector defined in this way is called the 
principal normal vector: 
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ds

dτ
ν


1

                                                          (1.6.5) 

 
 

 
 

Figure 1.6.2: the curvature 
 
This can be seen geometrically in Fig. 1.6.2: from Eqn. 1.6.5, τ  is a vector of 
magnitude s  in the direction of the vector normal to τ .  The radius of curvature R is 
defined as the reciprocal of the curvature; it is the radius of the circle which just touches 
the curve at s, Fig. 1.6.2. 
 
Finally, the unit vector perpendicular to both the tangent vector and the principal normal 
vector is called the unit binormal vector: 
 

ντb                                                      (1.6.6) 
 
The planes defined by these vectors are shown in Fig. 1.6.3; they are called the rectifying 
plane, the normal plane and the osculating plane. 
 

 
 
Figure 1.6.3: the unit tangent, principal normal and binormal vectors and associated 

planes 
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Rules of Differentiation 
 
The derivative of a vector is also a vector and the usual rules of differentiation apply, 
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    (1.6.7) 

 
Also, it is straight forward to show that {▲Problem 2} 
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        (1.6.8) 

 
(The order of the terms in the cross-product expression is important here.) 
 
 
1.6.3 Fields 
 
In many applications of vector calculus, a scalar or vector can be associated with each 
point in space x.  In this case they are called scalar or vector fields.  For example 
 

)(x  temperature a scalar field (a scalar-valued function of position) 
)(xv  velocity a vector field (a vector valued function of position) 

 
These quantities will in general depend also on time, so that one writes ),( tx  or ),( txv .  
Partial differentiation of scalar and vector fields with respect to the variable t is 
symbolised by t / .  On the other hand, partial differentiation with respect to the 
coordinates is symbolised by ix / .  The notation can be made more compact by 

introducing the subscript comma to denote partial differentiation with respect to the 
coordinate variables, in which case ii x /,  , kjijki xxuu  /2

, , and so on. 

 
 
1.6.4 The Gradient of a Scalar Field 
 
Let )(x  be a scalar field.  The gradient of   is a vector field defined by (see Fig. 1.6.4) 
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     Gradient of a Scalar Field (1.6.9) 

 
The gradient   is of considerable importance because if one takes the dot product of 

  with xd , it gives the increment in  : 
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Figure 1.6.4: the gradient of a vector 
 
If one writes xd  as eex dxd  , where e is a unit vector in the direction of dx, then 

 

 in  direction

d d

dx dn

       
  e

e                 (1.6.11) 

 
This quantity is called the directional derivative of  , in the direction of e, and will be 
discussed further in §1.6.11. 
 
The gradient of a scalar field is also called the scalar gradient, to distinguish it from the 
vector gradient (see later)2, and is also denoted by 
 

 grad      (1.6.12) 

 
Example (of the Gradient of a Scalar Field) 
 
Consider a two-dimensional temperature field 2

2
2
1 xx  .  Then 

 

2211 22 ee xx 
  

For example, at )0,1( , 1 , 12e  and at  )1,1( , 2 , 21 22 ee  , Fig. 1.6.5.  
Note the following: 

(i)   points in the direction normal to the curve const.  
(ii) the direction of maximum rate of change of   is in the direction of   

                                                 
2 in this context, a gradient is a derivative with respect to a position vector, but the term gradient is used 
more generally than this, e.g. see §1.14 
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(iii) the direction of zero d  is in the direction perpendicular to   
 

 
 

Figure 1.6.5: gradient of a temperature field 
 
The curves   const., 21 xx  are called isotherms (curves of constant temperature).  In 
general, they are called iso-curves (or iso-surfaces in three dimensions).  

■  
 
Many physical laws are given in terms of the gradient of a scalar field.  For example, 
Fourier’s law of heat conduction relates the heat flux q (the rate at which heat flows 
through a surface of unit area3) to the temperature gradient through 
 

 kq      (1.6.13) 
 
where k is the thermal conductivity of the material, so that heat flows along the direction 
normal to the isotherms. 
 
The Normal to a Surface 
 
In the above example, it was seen that   points in the direction normal to the curve  

const.   Here it will be seen generally how and why the gradient can be used to obtain 
a normal vector to a surface. 
 
Consider a surface represented by the scalar function cxxxf ),,( 321 , c a constant4, and 

also a space curve C lying on the surface, defined by the position vector 

332211 )()()( eeer txtxtx  .  The components of r must satisfy the equation of the 

surface, so ctxtxtxf ))(),(),(( 321 .  Differentiation gives 
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3 the flux is the rate of flow of fluid, particles or energy through a given surface; the flux density is the flux 
per unit area but, as here, this is more commonly referred to simply as the flux 
4 a surface can be represented by the equation cxxxf ),,( 321 ; for example, the expression 

42
3

2
2

2
1  xxx  is the equation for a sphere of radius 2 (with centre at the origin).  Alternatively, the 

surface can be written in the form ),( 213 xxgx  , for example 2
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which is equivalent to the equation   0/grad  dtdf r  and, as seen in §1.6.2, dtd /r  is a 
vector tangential to the surface. Thus fgrad  is normal to the tangent vector; fgrad  must 
be normal to all the tangents to all the curves through p, so it must be normal to the plane 
tangent to the surface. 
 
Taylor’s Series 
 
Writing   as a function of three variables (omitting time t), so that ),,( 321 xxx  , then 

  can be expanded in a three-dimensional Taylor’s series: 
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Neglecting the higher order terms, this can be written as 
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which is equivalent to 1.6.9, 1.6.10. 
 
 
1.6.5 The Nabla Operator 
 
The symbolic vector operator   is called the Nabla operator5.  One can write this in 
component form as 
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One can generalise the idea of the gradient of a scalar field by defining the dot product 
and the cross product of the vector operator   with a vector field   , according to the 
rules 
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The following terminology is used: 
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5 or del or the Gradient operator 
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These latter two are discussed in the following sections. 
 
 
1.6.6 The Divergence of a Vector Field 
 
From the definition (1.6.15), the divergence of a vector field )(xa  is the scalar field 
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   Divergence of a Vector Field    (1.6.17) 

 
Differential Elements & Physical interpretations of the Divergence 
 
Consider a flowing compressible6 material with velocity field ),,( 321 xxxv .  Consider 

now a differential element of this material, with dimensions 321 ,, xxx  , with bottom 

left-hand corner at ),,( 321 xxx , fixed in space and through which the material flows7, Fig. 

1.6.6. 
 
The component of the velocity in the 1x  direction, 1v , will vary over a face of the element 
but, if the element is small, the velocities will vary linearly as shown; only the 
components at the four corners of the face are shown for clarity. 
 
Since [distance = time   velocity], the volume of material flowing through the right-hand 
face in time t  is t  times the “volume” bounded by the four corner velocities (between 
the right-hand face and the plane surface denoted by the dotted lines); it is straightforward 
to show that this volume is equal to the volume shown to the right, Fig. 1.6.6b, with 
constant velocity equal to the average velocity avev , which occurs at the centre of the face.  

Thus the volume of material flowing out is8 tvxx ave 32  and the volume flux, i.e. the 

rate of volume flow, is avevxx 32 .  Now 
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Using a Taylor’s series expansion, and neglecting higher order terms, 
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6 that is, it can be compressed or expanded 
7 this type of fixed volume in space, used in analysis, is called a control volume 
8 the velocity will change by a small amount during the time interval t .  One could use the average 

velocity in the calculation, i.e.  ),(),( 112
1 ttvtv  xx , but in the limit as 0t , this will reduce to 

),(1 tv x  
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with the partial derivatives evaluated at ),,( 321 xxx , so the volume flux out is 
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Figure 1.6.6: a differential element; (a) flow through a face, (b) volume of material 
flowing through the face 

 
The net volume flux out (rate of volume flow out through the right-hand face minus the 
rate of volume flow in through the left-hand face) is then  11321 / xvxxx   and the net 

volume flux per unit volume is 11 / xv  .  Carrying out a similar calculation for the other 
two coordinate directions leads to 
 

net unit volume flux out of an elemental volume:   vdiv
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which is the physical meaning of the divergence of the velocity field. 
 
If 0div v , there is a net flow out and the density of material is decreasing.  On the other 
hand, if 0div v , the inflow equals the outflow and the density remains constant – such a 
material is called incompressible9.  A flow which is divergence free is said to be 
isochoric.  A vector v for which 0div v  is said to be solenoidal. 
 
Notes: 
 The above result holds only in the limit when the element shrinks to zero size – so that 

the extra terms in the Taylor series tend to zero and the velocity field varies in a linear 
fashion over a face 

 consider the velocity at a fixed point in space, ( , )tv x .  The velocity at a later time, 
( , )t t v x , actually gives the velocity of a different material particle.  This is shown in 

Fig. 1.6.7 below: the material particles 3,2,1  are moving through space and whereas 
),( txv  represents the velocity of particle 2, ( , )t t v x  now represents the velocity of 

particle 1, which has moved into position x.  This point is important in the consideration 
of the kinematics of materials, to be discussed in Chapter 2 

                                                 
9 a liquid, such as water, is a material which is incompressible 

),,( 32111 xxxxv ),,( 321 xxx
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2x
),,( 332111 xxxxxv 
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Figure 1.6.7: moving material particles 
 
Another example would be the divergence of the heat flux vector q.  This time suppose 
also that there is some generator of heat inside the element (a source), generating at a rate 
of r per unit volume, r being a scalar field.  Again, assuming the element to be small, one 
takes r to be acting at the mid-point of the element, and one considers ),( 12

1
1 xxr  .  

Assume a steady-state heat flow, so that the (heat) energy within the elemental volume 
remains constant with time – the law of balance of (heat) energy then requires that the net 
flow of heat out must equal the heat generated within, so 
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Dividing through by 321 xxx   and taking the limit as 0,, 321  xxx , one obtains 

 
rqdiv      (1.6.19) 
 

Here, the divergence of the heat flux vector field can be interpreted as the heat generated 
(or absorbed) per unit volume per unit time in a temperature field.  If the divergence is 
zero, there is no heat being generated (or absorbed) and the heat leaving the element is 
equal to the heat entering it. 
 
 
1.6.7 The Laplacian 
 
Combining Fourier’s law of heat conduction (1.6.13),  kq , with the energy 
balance equation (1.6.19), rqdiv , and assuming the conductivity is constant, leads to 

rk   .  Now 
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  (1.6.20) 
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This expression is called the Laplacian of  .  By introducing the Laplacian 
operator  2 , one has 
 

k

r
 2       (1.6.21) 

 
This equation governs the steady state heat flow for constant conductivity.  In general, the 
equation a 2  is called Poisson’s equation.  When there are no heat sources (or 

sinks), one has Laplace’s equation, 02   .  Laplace’s and Poisson’s equation arise in 
many other mathematical models in mechanics, electromagnetism, etc. 
 
 
1.6.8 The Curl of a Vector Field 
 
From the definition 1.6.15 and 1.6.14, the curl of a vector field )(xa  is the vector field 
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It can also be expressed in the form 
 

j
k

i
ijki

j

k
ijkk

i

j
ijk x

a

x

a

x

a

aaa
xxx

eee

eee

aa



























321

321

321

curl

    (1.6.23) 

 
Note: the divergence and curl of a vector field are independent of any coordinate system 
(for example, the divergence of a vector and the length and direction of acurl  are 
independent of the coordinate system in use) – these will be re-defined without reference 
to any particular coordinate system when discussing tensors (see §1.14). 
 
Physical interpretation of the Curl 
 
Consider a particle with position vector r and moving with velocity rωv  , that is, 
with an angular velocity   about an axis in the direction of ω .  Then {▲Problem 7} 
 

  ωrωv 2curl                        (1.6.24) 
 
Thus the curl of a vector field is associated with rotational properties.  In fact, if v is the 
velocity of a moving fluid, then a small paddle wheel placed in the fluid would tend to 
rotate in regions where 0curl v , in which case the velocity field v is called a vortex 
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field.  The paddle wheel would remain stationary in regions where 0curl v , in which 
case the velocity field v is called irrotational. 
 
 
1.6.9 Identities 
 
Here are some important identities of vector calculus {▲Problem 8}: 
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                        (1.6.25) 
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                                       (1.6.26) 

 
 
1.6.10 Cylindrical and Spherical Coordinates 
 
Cartesian coordinates have been used exclusively up to this point.  In many practical 
problems, it is easier to carry out an analysis in terms of cylindrical or spherical 
coordinates.  Differentiation in these coordinate systems is discussed in what follows10. 
 
Cylindrical Coordinates 
 
Cartesian and cylindrical coordinates are related through (see Fig. 1.6.8) 
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Then the Cartesian partial derivatives become 
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10 this section also serves as an introduction to the more general topic of Curvilinear Coordinates covered 
in §1.16-§1.19 
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Figure 1.6.8: cylindrical coordinates 
 
The base vectors are related through 
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        (1.6.29) 

 
so that from Eqn. 1.6.14, after some algebra, the Nabla operator in cylindrical coordinates 
reads as {▲Problem 9} 
 

zrr zr 










 eee


1
                       (1.6.30) 

 
which allows one to take the gradient of a scalar field in cylindrical coordinates: 
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Cartesian base vectors are independent of position.  However, the cylindrical base 
vectors, although they are always of unit magnitude, change direction with position.  In 
particular, the directions of the base vectors ee ,r  depend on  , and so these base 

vectors have derivatives with respect to  : from Eqn. 1.6.29, 
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with all other derivatives of the base vectors with respect to zr ,,  equal to zero. 
 
The divergence can now be evaluated: 
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            (1.6.33) 

 
Similarly the curl of a vector and the Laplacian of a scalar are {▲Problem 10} 
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        (1.6.34) 

 
 
Spherical Coordinates 
 
Cartesian and spherical coordinates are related through (see Fig. 1.6.9) 
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and the base vectors are related through 
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   (1.6.36) 

 

 
 

Figure 1.6.9: spherical coordinates 
 
In this case the non-zero derivatives of the base vectors are 
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and it can then be shown that {▲Problem 11} 
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1.6.11 The Directional Derivative 
 
Consider a function  x .  The directional derivative of   in the direction of some vector 
w is the change in   in that direction.  Now the difference between its values at position 
x and wx   is, Fig. 1.6.10,  
 

   xwx  d      (1.6.39) 
 

 
 

Figure 1.6.10: the directional derivative 
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An approximation to d  can be obtained by introducing a parameter   and by 

considering the function  wx   ; one has    xwx    0  and 

   wxwx     1 . 

 
If one treats   as a function of  , a Taylor’s series about 0  gives 
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or, writing it as a function of wx  , 
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By setting 1 , the derivative here can be seen to be a linear approximation to the 
increment d , Eqn. 1.6.39.  This is defined as the directional derivative of the function 

)(x  at the point x in the direction of w, and is denoted by 
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    The Directional Derivative        (1.6.40) 

 
The directional derivative is also written as  xwD . 

 
The power of the directional derivative as defined by Eqn. 1.6.40 is its generality, as seen 
in the following example. 
 
Example (the Directional Derivative of the Determinant) 
 
Consider the directional derivative of the determinant of the 22  matrix A, in the 
direction of a second matrix T (the word “direction” is obviously used loosely in this 
context).  One has 
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The Directional Derivative and The Gradient 
 
Consider a scalar-valued function   of a vector z.  Let z be a function of a parameter  , 

       321 ,, zzz .  Then 
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Thus, with wxz  , 
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which can be compared with Eqn. 1.6.11.  Note that for Eqns. 1.6.11 and 1.6.41 to be 
consistent definitions of the directional derivative, w here should be a unit vector. 
 
 
1.6.12 Formal Treatment of Vector Calculus 
 
The calculus of vectors is now treated more formally in what follows, following on from 
the introductory section in §1.2.  Consider a vector h, an element of the Euclidean vector 
space E, Eh .  In order to be able to speak of limits as elements become “small” or 
“close” to each other in this space, one requires a norm.  Here, take the standard 
Euclidean norm on E, Eqn. 1.2.8, 
 

hhhhh  ,                                              (1.6.42) 

 
Consider next a scalar function REf : .  If there is a constant 0M  such that 

  hh Mf   as oh  , then one writes 

 
   hh Of     as   oh                                            (1.6.43) 

 
This is called the Big Oh (or Landau) notation.  Eqn. 1.6.43 states that  hf  goes to 

zero at least as fast as h .  An expression such as  

 
     hhh Ogf                                                (1.6.44) 

 
then means that    hh gf   is smaller than h  for h  sufficiently close to o. 

 
Similarly, if  
 

 
0

h

hf
   as   oh                                           (1.6.45) 

 
 then one writes    hh of   as oh  .  This implies that  hf  goes to zero faster than 

h . 
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A field is a function which is defined in a Euclidean (point) space 3E .  A scalar field is 
then a function REf 3: .  A scalar field is differentiable at a point 3Ex  if there 

exists a vector   EDf x  such that 
 

       hhxxhx oDfff     for all   Eh                     (1.6.46) 

 
In that case, the vector  xDf  is called the derivative (or gradient) of f at x (and is given 

the symbol  xf ). 
 
Now setting wh   in 1.6.46, where Ew  is a unit vector, dividing through by   and 
taking the limit as 0 , one has the equivalent statement  
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   for all   Ew                     (1.6.47) 

 
which is 1.6.41.  In other words, for the derivative to exist, the scalar field must have a 
directional derivative in all directions at x. 
 
Using the chain rule as in §1.6.11, Eqn. 1.6.47 can be expressed in terms of the Cartesian 
basis  ie , 
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This must be true for all w and so, in a Cartesian basis,  
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which is Eqn. 1.6.9. 
 
 
1.6.13 Problems 
 
1. A particle moves along a curve in space defined by 

      3
32

2
2

1
3 3844 eeer tttttt   

Here, t is time.  Find 
(i) a unit tangent vector at 2t  
(ii) the magnitudes of the tangential and normal components of acceleration at 2t  

2. Use the index notation (1.3.12) to show that   a
va

vav 
dt

d

dt

d

dt

d
.  Verify this 

result for 21
2

3
2

1 ,3 eeaeev tttt  .  [Note: the permutation symbol and the unit 

vectors are independent of t; the components of the vectors are scalar functions of t 
which can be differentiated in the usual way, for example by using the product rule of 
differentiation.] 
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3. The density distribution throughout a material is given by xx  1 . 
(i) what sort of function is this? 
(ii) the density is given in symbolic notation - write it in index notation  
(iii) evaluate the gradient of   
(iv) give a unit vector in the direction in which the density is increasing the most 
(v) give a unit vector in any direction in which the density is not increasing 
(vi) take any unit vector other than the base vectors and the other vectors you used 

above and calculate dxd /  in the direction of this unit vector 
(vii) evaluate and sketch all these quantities for the point (2,1). 
In parts (iii-iv), give your answer in (a) symbolic, (b) index, and (c) full notation. 

4. Consider the scalar field defined by zyxx 232  . 
(i) find the unit normal to the surface of constant   at the origin (0,0,0) 
(ii) what is the maximum value of the directional derivative of   at the origin? 

(iii) evaluate dxd /  at the origin if )( 31 eex  dsd . 

5. If 312211321 eeeu xxxxxx  , determine udiv  and ucurl .  

6. Determine the constant a so that the vector 
      331232121 23 eeev axxxxxx   

is solenoidal. 
7. Show that ωv 2curl   (see also Problem 9 in §1.1). 
8. Verify the identities (1.6.25-26). 
9. Use (1.6.14) to derive the Nabla operator in cylindrical coordinates (1.6.30). 
10. Derive Eqn. (1.6.34), the curl of a vector and the Laplacian of a scalar in the 

cylindrical coordinates. 
11. Derive (1.6.38), the gradient, divergence and Laplacian in spherical coordinates. 
12. Show that the directional derivative )(D uv  of the scalar-valued function of a vector 

uuu )( , in the direction v, is vu 2 . 
13. Show that the directional derivative of the functional 
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16

Vector Calculus

16.1 Ve
tor Fields

This chapter is concerned with applying calculus in the context of vector fields. A

two-dimensional vector field is a function f that maps each point (x, y) in R
2 to a two-

dimensional vector 〈u, v〉, and similarly a three-dimensional vector field maps (x, y, z) to

〈u, v, w〉. Since a vector has no position, we typically indicate a vector field in graphical

form by placing the vector f(x, y) with its tail at (x, y). Figure 16.1.1 shows a represen-

tation of the vector field f(x, y) = 〈−x/
√

x2 + y2 + 4, y/
√

x2 + y2 + 4〉. For such a graph

to be readable, the vectors must be fairly short, which is accomplished by using a different

scale for the vectors than for the axes. Such graphs are thus useful for understanding the

sizes of the vectors relative to each other but not their absolute size.

Vector fields have many important applications, as they can be used to represent many

physical quantities: the vector at a point may represent the strength of some force (gravity,

electricity, magnetism) or a velocity (wind speed or the velocity of some other fluid).

We have already seen a particularly important kind of vector field—the gradient. Given

a function f(x, y), recall that the gradient is 〈fx(x, y), fy(x, y)〉, a vector that depends on

(is a function of) x and y. We usually picture the gradient vector with its tail at (x, y),

pointing in the direction of maximum increase. Vector fields that are gradients have some

particularly nice properties, as we will see. An important example is

F =

〈 −x

(x2 + y2 + z2)3/2
,

−y

(x2 + y2 + z2)3/2
,

−z

(x2 + y2 + z2)3/2

〉

,

419
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Figure 16.1.1 A vector field.

which points from the point (x, y, z) toward the origin and has length

√

x2 + y2 + z2

(x2 + y2 + z2)3/2
=

1

(
√

x2 + y2 + z2)2
,

which is the reciprocal of the square of the distance from (x, y, z) to the origin—in other

words, F is an “inverse square law”. The vector F is a gradient:

F = ∇ 1
√

x2 + y2 + z2
, (16.1.1)

which turns out to be extremely useful.

Exercises 16.1.

Sketch the vector fields; check your work with Sage’s plot_vector_field function.

1. 〈x, y〉
2. 〈−x,−y〉
3. 〈x,−y〉
4. 〈sin x, cos y〉
5. 〈y, 1/x〉
6. 〈x+ 1, x+ 3〉
7. Verify equation 16.1.1.
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16.2 Line Integrals

We have so far integrated “over” intervals, areas, and volumes with single, double, and

triple integrals. We now investigate integration over or “along” a curve—“line integrals”

are really “curve integrals”.

As with other integrals, a geometric example may be easiest to understand. Consider

the function f = x+ y and the parabola y = x2 in the x-y plane, for 0 ≤ x ≤ 2. Imagine

that we extend the parabola up to the surface f , to form a curved wall or curtain, as in

figure 16.2.1. What is the area of the surface thus formed? We already know one way to

compute surface area, but here we take a different approach that is more useful for the

problems to come.

2.0

1.5

x

1.0

0.5

0.0 0

1

2
y

3

4
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1

2

3z

4

5

6

Figure 16.2.1 Approximating the area under a curve. (AP)

As usual, we start by thinking about how to approximate the area. We pick some

points along the part of the parabola we’re interested in, and connect adjacent points by

straight lines; when the points are close together, the length of each line segment will be

close to the length along the parabola. Using each line segment as the base of a rectangle,

we choose the height to be the height of the surface f above the line segment. If we add

up the areas of these rectangles, we get an approximation to the desired area, and in the

limit this sum turns into an integral.

Typically the curve is in vector form, or can easily be put in vector form; in this

example we have v(t) = 〈t, t2〉. Then as we have seen in section 13.3 on arc length,

the length of one of the straight line segments in the approximation is approximately
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ds = |v′| dt =
√
1 + 4t2 dt, so the integral is

∫ 2

0

f(t, t2)
√

1 + 4t2 dt =

∫ 2

0

(t+ t2)
√

1 + 4t2 dt =
167

48

√
17− 1

12
− 1

64
ln(4 +

√
17).

This integral of a function along a curve C is often written in abbreviated form as

∫

C

f(x, y) ds.

EXAMPLE 16.2.1 Compute

∫

C

yex ds where C is the line segment from (1, 2) to (4, 7).

We write the line segment as a vector function: v = 〈1, 2〉 + t〈3, 5〉, 0 ≤ t ≤ 1, or in

parametric form x = 1 + 3t, y = 2 + 5t. Then

∫

C

yex ds =

∫ 1

0

(2 + 5t)e1+3t
√

32 + 52 dt =
16

9

√
34e4 − 1

9

√
34 e.

All of these ideas extend to three dimensions in the obvious way.

EXAMPLE 16.2.2 Compute

∫

C

x2z ds where C is the line segment from (0, 6,−1) to

(4, 1, 5).

We write the line segment as a vector function: v = 〈0, 6,−1〉+ t〈4,−5, 6〉, 0 ≤ t ≤ 1,

or in parametric form x = 4t, y = 6− 5t, z = −1 + 6t. Then

∫

C

x2z ds =

∫ 1

0

(4t)2(−1 + 6t)
√
16 + 25 + 36 dt = 16

√
77

∫ 1

0

−t2 + 6t3 dt =
56

3

√
77.

Now we turn to a perhaps more interesting example. Recall that in the simplest case,

the work done by a force on an object is equal to the magnitude of the force times the

distance the object moves; this assumes that the force is constant and in the direction of

motion. We have already dealt with examples in which the force is not constant; now we

are prepared to examine what happens when the force is not parallel to the direction of

motion.
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We have already examined the idea of components of force, in example 12.3.4: the

component of a force F in the direction of a vector v is

F · v
|v|2 v,

the projection of F onto v. The length of this vector, that is, the magnitude of the force

in the direction of v, is
F · v
|v| ,

the scalar projection of F onto v. If an object moves subject to this (constant) force, in

the direction of v, over a distance equal to the length of v, the work done is

F · v
|v| |v| = F · v.

Thus, work in the vector setting is still “force times distance”, except that “times” means

“dot product”.

If the force varies from point to point, it is represented by a vector field F; the dis-

placement vector v may also change, as an object may follow a curving path in two or

three dimensions. Suppose that the path of an object is given by a vector function r(t); at

any point along the path, the (small) tangent vector r′ ∆t gives an approximation to its

motion over a short time ∆t, so the work done during that time is approximately F · r′∆t;

the total work over some time period is then

∫ t1

t0

F · r′ dt.

It is useful to rewrite this in various ways at different times. We start with

∫ t1

t0

F · r′ dt =
∫

C

F · dr,

abbreviating r′ dt by dr. Or we can write

∫ t1

t0

F · r′ dt =
∫ t1

t0

F · r′

|r′| |r
′| dt =

∫ t1

t0

F ·T |r′| dt =
∫

C

F ·T ds,

using the unit tangent vector T, abbreviating |r′| dt as ds, and indicating the path of the

object by C. In other words, work is computed using a particular line integral of the form



424 Chapter 16 Vector Calculus

we have considered. Alternately, we sometimes write

∫

C

F · r′ dt =
∫

C

〈f, g, h〉 · 〈x′, y′, z′〉 dt =
∫

C

(

f
dx

dt
+ g

dy

dt
+ h

dz

dt

)

dt

=

∫

C

f dx+ g dy + h dz =

∫

C

f dx+

∫

C

g dy +

∫

C

h dz,

and similarly for two dimensions, leaving out references to z.

EXAMPLE 16.2.3 Suppose an object moves from (−1, 1) to (2, 4) along the path

r(t) = 〈t, t2〉, subject to the force F = 〈x sin y, y〉. Find the work done.

We can write the force in terms of t as 〈t sin(t2), t2〉, and compute r′(t) = 〈1, 2t〉, and
then the work is

∫ 2

−1

〈t sin(t2), t2〉 · 〈1, 2t〉 dt =
∫ 2

−1

t sin(t2) + 2t3 dt =
15

2
+

cos(1)− cos(4)

2
.

Alternately, we might write

∫

C

x sin y dx+

∫

C

y dy =

∫ 2

−1

x sin(x2) dx+

∫ 4

1

y dy = −cos(4)

2
+

cos(1)

2
+

16

2
− 1

2

getting the same answer.

Exercises 16.2.

1. Compute

∫

C

xy2 ds along the line segment from (1, 2, 0) to (2, 1, 3). ⇒

2. Compute

∫

C

sin xds along the line segment from (−1, 2, 1) to (1, 2, 5). ⇒

3. Compute

∫

C

z cos(xy) ds along the line segment from (1, 0, 1) to (2, 2, 3). ⇒

4. Compute

∫

C

sin xdx+cos y dy along the top half of the unit circle, from (1, 0) to (−1, 0). ⇒

5. Compute

∫

C

xey dx+ x2y dy along the line segment y = 3, 0 ≤ x ≤ 2. ⇒

6. Compute

∫

C

xey dx+ x2y dy along the line segment x = 4, 0 ≤ y ≤ 4. ⇒

7. Compute

∫

C

xey dx+ x2y dy along the curve x = 3t, y = t2, 0 ≤ t ≤ 1. ⇒

8. Compute

∫

C

xey dx+ x2y dy along the curve 〈et, et〉, −1 ≤ t ≤ 1. ⇒

9. Compute

∫

C

〈cosx, sin y〉 · dr along the curve 〈t, t〉, 0 ≤ t ≤ 1. ⇒
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10. Compute

∫

C

〈1/xy, 1/(x+ y)〉 · dr along the path from (1, 1) to (3, 1) to (3, 6) using straight

line segments. ⇒

11. Compute

∫

C

〈1/xy, 1/(x+ y)〉 · dr along the curve 〈2t, 5t〉, 1 ≤ t ≤ 4. ⇒

12. Compute

∫

C

〈1/xy, 1/(x+ y)〉 · dr along the curve 〈t, t2〉, 1 ≤ t ≤ 4. ⇒

13. Compute

∫

C

yz dx+ xz dy + xy dz along the curve 〈t, t2, t3〉, 0 ≤ t ≤ 1. ⇒

14. Compute

∫

C

yz dx+ xz dy + xy dz along the curve 〈cos t, sin t, tan t〉, 0 ≤ t ≤ π. ⇒

15. An object moves from (1, 1) to (4, 8) along the path r(t) = 〈t2, t3〉, subject to the force
F = 〈x2, sin y〉. Find the work done. ⇒

16. An object moves along the line segment from (1, 1) to (2, 5), subject to the force F =
〈x/(x2 + y2), y/(x2 + y2)〉. Find the work done. ⇒

17. An object moves along the parabola r(t) = 〈t, t2〉, 0 ≤ t ≤ 1, subject to the force F =
〈1/(y + 1),−1/(x+ 1)〉. Find the work done. ⇒

18. An object moves along the line segment from (0, 0, 0) to (3, 6, 10), subject to the force F =
〈x2, y2, z2〉. Find the work done. ⇒

19. An object moves along the curve r(t) = 〈
√
t, 1/

√
t, t〉 1 ≤ t ≤ 4, subject to the force F =

〈y, z, x〉. Find the work done. ⇒
20. An object moves from (1, 1, 1) to (2, 4, 8) along the path r(t) = 〈t, t2, t3〉, subject to the force

F = 〈sinx, sin y, sin z〉. Find the work done. ⇒
21. An object moves from (1, 0, 0) to (−1, 0, π) along the path r(t) = 〈cos t, sin t, t〉, subject to

the force F = 〈y2, y2, xz〉. Find the work done. ⇒
22. Give an example of a non-trivial force field F and non-trivial path r(t) for which the total

work done moving along the path is zero.

16.3 The Fundamental Theorem of Line Integrals

One way to write the Fundamental Theorem of Calculus (7.2.1) is:

∫ b

a

f ′(x) dx = f(b)− f(a).

That is, to compute the integral of a derivative f ′ we need only compute the values of f

at the endpoints. Something similar is true for line integrals of a certain form.

THEOREM 16.3.1 Fundamental Theorem of Line Integrals Suppose a curve

C is given by the vector function r(t), with a = r(a) and b = r(b). Then
∫

C

∇f · dr = f(b)− f(a),

provided that r is sufficiently nice.
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Proof. We write r = 〈x(t), y(t), z(t)〉, so that r′ = 〈x′(t), y′(t), z′(t)〉. Also, we know

that ∇f = 〈fx, fy, fz〉. Then
∫

C

∇f · dr =

∫ b

a

〈fx, fy, fz〉 · 〈x′(t), y′(t), z′(t)〉 dt =
∫ b

a

fxx
′ + fyy

′ + fzz
′ dt.

By the chain rule (see section 14.4) fxx
′ + fyy

′ + fzz
′ = df/dt, where f in this context

means f(x(t), y(t), z(t)), a function of t. In other words, all we have is
∫ b

a

f ′(t) dt = f(b)− f(a).

In this context, f(a) = f(x(a), y(a), z(a)). Since a = r(a) = 〈x(a), y(a), z(a)〉, we can write

f(a) = f(a)—this is a bit of a cheat, since we are simultaneously using f to mean f(t) and

f(x, y, z), and since f(x(a), y(a), z(a)) is not technically the same as f(〈x(a), y(a), z(a)〉),
but the concepts are clear and the different uses are compatible. Doing the same for b, we

get
∫

C

∇f · dr =

∫ b

a

f ′(t) dt = f(b)− f(a) = f(b)− f(a).

This theorem, like the Fundamental Theorem of Calculus, says roughly that if we

integrate a “derivative-like function” (f ′ or ∇f) the result depends only on the values of

the original function (f) at the endpoints.

If a vector field F is the gradient of a function, F = ∇f , we say that F is a conserva-

tive vector field. If F is a conservative force field, then the integral for work,
∫

C
F · dr,

is in the form required by the Fundamental Theorem of Line Integrals. This means that

in a conservative force field, the amount of work required to move an object from point a

to point b depends only on those points, not on the path taken between them.

EXAMPLE 16.3.2 An object moves in the force field

F =

〈 −x

(x2 + y2 + z2)3/2
,

−y

(x2 + y2 + z2)3/2
,

−z

(x2 + y2 + z2)3/2

〉

,

along the curve r = 〈1+ t, t3, t cos(πt)〉 as t ranges from 0 to 1. Find the work done by the

force on the object.

The straightforward way to do this involves substituting the components of r into F,

forming the dot product F ·r′, and then trying to compute the integral, but this integral is

extraordinarily messy, perhaps impossible to compute. But since F = ∇(1/
√

x2 + y2 + z2)

we need only substitute:

∫

C

F · dr =
1

√

x2 + y2 + z2

∣

∣

∣

∣

∣

(2,1,−1)

(1,0,0)

=
1√
6
− 1.
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Another immediate consequence of the Fundamental Theorem involves closed paths.

A path C is closed if it forms a loop, so that traveling over the C curve brings you back to

the starting point. If C is a closed path, we can integrate around it starting at any point

a; since the starting and ending points are the same,

∫

C

∇f · dr = f(a)− f(a) = 0.

For example, in a gravitational field (an inverse square law field) the amount of work

required to move an object around a closed path is zero. Of course, it’s only the net

amount of work that is zero. It may well take a great deal of work to get from point a to

point b, but then the return trip will “produce” work. For example, it takes work to pump

water from a lower to a higher elevation, but if you then let gravity pull the water back

down, you can recover work by running a water wheel or generator. (In the real world you

won’t recover all the work because of various losses along the way.)

To make use of the Fundamental Theorem of Line Integrals, we need to be able to

spot conservative vector fields F and to compute f so that F = ∇f . Suppose that F =

〈P,Q〉 = ∇f . Then P = fx and Q = fy, and provided that f is sufficiently nice, we know

from Clairaut’s Theorem (14.6.2) that Py = fxy = fyx = Qx. If we compute Py and Qx

and find that they are not equal, then F is not conservative. If Py = Qx, then, again

provided that F is sufficiently nice, we can be assured that F is conservative. Ultimately,

what’s important is that we be able to find f ; as this amounts to finding anti-derivatives,

we may not always succeed.

EXAMPLE 16.3.3 Find an f so that 〈3 + 2xy, x2 − 3y2〉 = ∇f .

First, note that

∂

∂y
(3 + 2xy) = 2x and

∂

∂x
(x2 − 3y2) = 2x,

so the desired f does exist. This means that fx = 3 + 2xy, so that f = 3x+ x2y + g(y);

the first two terms are needed to get 3+2xy, and the g(y) could be any function of y, as it

would disappear upon taking a derivative with respect to x. Likewise, since fy = x2−3y2,

f = x2y − y3 + h(x). The question now becomes, is it possible to find g(y) and h(x) so

that

3x+ x2y + g(y) = x2y − y3 + h(x),

and of course the answer is yes: g(y) = −y3, h(x) = 3x. Thus, f = 3x+ x2y − y3.

We can test a vector field F = 〈P,Q,R〉 in a similar way. Suppose that 〈P,Q,R〉 =
〈fx, fy, fz〉. If we temporarily hold z constant, then f(x, y, z) is a function of x and y,
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and by Clairaut’s Theorem Py = fxy = fyx = Qx. Likewise, holding y constant implies

Pz = fxz = fzx = Rx, and with x constant we get Qz = fyz = fzy = Ry. Conversely, if we

find that Py = Qx, Pz = Rx, and Qz = Ry then F is conservative.

Exercises 16.3.

1. Find an f so that ∇f = 〈2x+ y2, 2y + x2〉, or explain why there is no such f . ⇒
2. Find an f so that ∇f = 〈x3,−y4〉, or explain why there is no such f . ⇒
3. Find an f so that ∇f = 〈xey, yex〉, or explain why there is no such f . ⇒
4. Find an f so that ∇f = 〈y cos x, y sinx〉, or explain why there is no such f . ⇒
5. Find an f so that ∇f = 〈y cos x, sin x〉, or explain why there is no such f . ⇒
6. Find an f so that ∇f = 〈x2y3, xy4〉, or explain why there is no such f . ⇒
7. Find an f so that ∇f = 〈yz, xz, xy〉, or explain why there is no such f . ⇒

8. Evaluate

∫

C

(10x4−2xy3) dx−3x2y2 dy where C is the part of the curve x5−5x2y2−7x2 = 0

from (3,−2) to (3, 2). ⇒
9. Let F = 〈yz, xz, xy〉. Find the work done by this force field on an object that moves from

(1, 0, 2) to (1, 2, 3). ⇒
10. Let F = 〈ey, xey + sin z, y cos z〉. Find the work done by this force field on an object that

moves from (0, 0, 0) to (1,−1, 3). ⇒
11. Let

F =

〈

−x

(x2 + y2 + z2)3/2
,

−y

(x2 + y2 + z2)3/2
,

−z

(x2 + y2 + z2)3/2

〉

.

Find the work done by this force field on an object that moves from (1, 1, 1) to (4, 5, 6). ⇒

16.4 Green's Theorem

We now come to the first of three important theorems that extend the Fundamental The-

orem of Calculus to higher dimensions. (The Fundamental Theorem of Line Integrals has

already done this in one way, but in that case we were still dealing with an essentially

one-dimensional integral.) They all share with the Fundamental Theorem the following

rather vague description: To compute a certain sort of integral over a region, we may do

a computation on the boundary of the region that involves one fewer integrations.

Note that this does indeed describe the Fundamental Theorem of Calculus and the

Fundamental Theorem of Line Integrals: to compute a single integral over an interval, we

do a computation on the boundary (the endpoints) that involves one fewer integrations,

namely, no integrations at all.
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THEOREM 16.4.1 Green’s Theorem If the vector field F = 〈P,Q〉 and the region

D are sufficiently nice, and if C is the boundary of D (C is a closed curve), then
∫∫

D

∂Q

∂x
− ∂P

∂y
dA =

∫

C

P dx+Qdy,

provided the integration on the right is done counter-clockwise around C.

To indicate that an integral

∫

C

is being done over a closed curve in the counter-

clockwise direction, we usually write

∮

C

. We also use the notation ∂D to mean the

boundary of D oriented in the counterclockwise direction. With this notation,

∮

C

=

∫

∂D

.

We already know one case, not particularly interesting, in which this theorem is true:

If F is conservative, we know that the integral

∮

C

F · dr = 0, because any integral of a

conservative vector field around a closed curve is zero. We also know in this case that

∂P/∂y = ∂Q/∂x, so the double integral in the theorem is simply the integral of the zero

function, namely, 0. So in the case that F is conservative, the theorem says simply that

0 = 0.

EXAMPLE 16.4.2 We illustrate the theorem by computing both sides of
∫

∂D

x4 dx+ xy dy =

∫∫

D

y − 0 dA,

where D is the triangular region with corners (0, 0), (1, 0), (0, 1).

Starting with the double integral:
∫∫

D

y − 0 dA =

∫ 1

0

∫ 1−x

0

y dy dx =

∫ 1

0

(1− x)2

2
dx = −(1− x)3

6

∣

∣

∣

∣

1

0

=
1

6
.

There is no single formula to describe the boundary of D, so to compute the left side

directly we need to compute three separate integrals corresponding to the three sides of

the triangle, and each of these integrals we break into two integrals, the “dx” part and the

“dy” part. The three sides are described by y = 0, y = 1 − x, and x = 0. The integrals

are then
∫

∂D

x4 dx+ xy dy =

∫ 1

0

x4 dx+

∫ 0

0

0 dy +

∫ 0

1

x4 dx+

∫ 1

0

(1− y)y dy +

∫ 0

0

0 dx+

∫ 0

1

0 dy

=
1

5
+ 0− 1

5
+

1

6
+ 0 + 0 =

1

6
.

Alternately, we could describe the three sides in vector form as 〈t, 0〉, 〈1 − t, t〉, and
〈0, 1− t〉. Note that in each case, as t ranges from 0 to 1, we follow the corresponding side
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in the correct direction. Now

∫

∂D

x4 dx+ xy dy =

∫ 1

0

t4 + t · 0 dt+
∫ 1

0

−(1− t)4 + (1− t)t dt+

∫ 1

0

0 + 0 dt

=

∫ 1

0

t4 dt+

∫ 1

0

−(1− t)4 + (1− t)t dt =
1

6
.

In this case, none of the integrations are difficult, but the second approach is some-

what tedious because of the necessity to set up three different integrals. In different

circumstances, either of the integrals, the single or the double, might be easier to compute.

Sometimes it is worthwhile to turn a single integral into the corresponding double integral,

sometimes exactly the opposite approach is best.

Here is a clever use of Green’s Theorem: We know that areas can be computed using

double integrals, namely,
∫∫

D

1 dA

computes the area of region D. If we can find P and Q so that ∂Q/∂x− ∂P/∂y = 1, then

the area is also
∫

∂D

P dx+Qdy.

It is quite easy to do this: P = 0, Q = x works, as do P = −y,Q = 0 and P = −y/2, Q =

x/2.

EXAMPLE 16.4.3 An ellipse centered at the origin, with its two principal axes aligned

with the x and y axes, is given by

x2

a2
+

y2

b2
= 1.

We find the area of the interior of the ellipse via Green’s theorem. To do this we need a

vector equation for the boundary; one such equation is 〈a cos t, b sin t〉, as t ranges from 0

to 2π. We can easily verify this by substitution:

x2

a2
+

y2

b2
=

a2 cos2 t

a2
+

b2 sin2 t

b2
= cos2 t+ sin2 t = 1.

Let’s consider the three possibilities for P and Q above: Using 0 and x gives

∮

C

0 dx+ x dy =

∫ 2π

0

a cos(t)b cos(t) dt =

∫ 2π

0

ab cos2(t) dt.
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Using −y and 0 gives

∮

C

−y dx+ 0 dy =

∫ 2π

0

−b sin(t)(−a sin(t)) dt =

∫ 2π

0

ab sin2(t) dt.

Finally, using −y/2 and x/2 gives

∮

C

−y

2
dx+

x

2
dy =

∫ 2π

0

−b sin(t)

2
(−a sin(t)) dt+

a cos(t)

2
(b cos(t)) dt

=

∫ 2π

0

ab sin2 t

2
+

ab cos2 t

2
dt =

∫ 2π

0

ab

2
dt = πab.

The first two integrals are not particularly difficult, but the third is very easy, though the

choice of P and Q seems more complicated.
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Figure 16.4.1 A “standard” ellipse, x2

a2 + y2

b2
= 1.

Proof of Green’s Theorem. We cannot here prove Green’s Theorem in general, but

we can do a special case. We seek to prove that

∮

C

P dx+Qdy =

∫∫

D

∂Q

∂x
− ∂P

∂y
dA.

It is sufficient to show that

∮

C

P dx =

∫∫

D

−∂P

∂y
dA and

∮

C

Qdy =

∫∫

D

∂Q

∂x
dA,

which we can do if we can compute the double integral in both possible ways, that is, using

dA = dy dx and dA = dx dy.
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For the first equation, we start with

∫∫

D

∂P

∂y
dA =

∫ b

a

∫ g2(x)

g1(x)

∂P

∂y
dy dx =

∫ b

a

P (x, g2(x))− P (x, g1(x)) dx.

Here we have simply used the ordinary Fundamental Theorem of Calculus, since for the

inner integral we are integrating a derivative with respect to y: an antiderivative of ∂P/∂y

with respect to y is simply P (x, y), and then we substitute g1 and g2 for y and subtract.

Now we need to manipulate
∮

C
P dx. The boundary of region D consists of 4 parts,

given by the equations y = g1(x), x = b, y = g2(x), and x = a. On the portions x = b

and x = a, dx = 0 dt, so the corresponding integrals are zero. For the other two portions,

we use the parametric forms x = t, y = g1(t), a ≤ t ≤ b, and x = t, y = g2(t), letting t

range from b to a, since we are integrating counter-clockwise around the boundary. The

resulting integrals give us

∮

C

P dx =

∫ b

a

P (t, g1(t)) dt+

∫ a

b

P (t, g2(t)) dt =

∫ b

a

P (t, g1(t)) dt−
∫ b

a

P (t, g2(t)) dt

=

∫ b

a

P (t, g1(t))− P (t, g2(t)) dt

which is the result of the double integral times −1, as desired.

The equation involving Q is essentially the same, and left as an exercise.

Exercises 16.4.

1. Compute

∫

∂D

2y dx+ 3xdy, where D is described by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. ⇒

2. Compute

∫

∂D

xy dx+ xy dy, where D is described by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. ⇒

3. Compute

∫

∂D

e2x+3y dx+ exy dy, where D is described by −2 ≤ x ≤ 2, −1 ≤ y ≤ 1. ⇒

4. Compute

∫

∂D

y cos xdx+ y sinx dy, where D is described by 0 ≤ x ≤ π/2, 1 ≤ y ≤ 2. ⇒

5. Compute

∫

∂D

x2y dx+ xy2 dy, where D is described by 0 ≤ x ≤ 1, 0 ≤ y ≤ x. ⇒

6. Compute

∫

∂D

x
√
y dx+

√
x+ y dy, where D is described by 1 ≤ x ≤ 2, 2x ≤ y ≤ 4. ⇒

7. Compute

∫

∂D

(x/y) dx+ (2 + 3x) dy, where D is described by 1 ≤ x ≤ 2, 1 ≤ y ≤ x2. ⇒

8. Compute

∫

∂D

sin y dx+ sin xdy, where D is described by 0 ≤ x ≤ π/2, x ≤ y ≤ π/2. ⇒

9. Compute

∫

∂D

x ln y dx, where D is described by 1 ≤ x ≤ 2, ex ≤ y ≤ ex
2

. ⇒
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10. Compute

∫

∂D

√

1 + x2 dy, where D is described by −1 ≤ x ≤ 1, x2 ≤ y ≤ 1. ⇒

11. Compute

∫

∂D

x2y dx− xy2 dy, where D is described by x2 + y2 ≤ 1. ⇒

12. Compute

∫

∂D

y3 dx+ 2x3 dy, where D is described by x2 + y2 ≤ 4. ⇒

13. Evaluate

∮

C

(y− sin(x)) dx+cos(x) dy, where C is the boundary of the triangle with vertices

(0, 0), (1, 0), and (1, 2) oriented counter-clockwise. ⇒

14. Finish our proof of Green’s Theorem by showing that

∮

C

Qdy =

∫∫

D

∂Q

∂x
dA.

16.5 Divergen
e and Curl

Divergence and curl are two measurements of vector fields that are very useful in a variety of

applications. Both are most easily understood by thinking of the vector field as representing

a flow of a liquid or gas; that is, each vector in the vector field should be interpreted as a

velocity vector. Roughly speaking, divergence measures the tendency of the fluid to collect

or disperse at a point, and curl measures the tendency of the fluid to swirl around the point.

Divergence is a scalar, that is, a single number, while curl is itself a vector. The magnitude

of the curl measures how much the fluid is swirling, the direction indicates the axis around

which it tends to swirl. These ideas are somewhat subtle in practice, and are beyond

the scope of this course. You can find additional information on the web, for example at

http://mathinsight.org/curl_idea and http://mathinsight.org/divergence_idea

and in many books including Div, Grad, Curl, and All That: An Informal Text on Vector

Calculus, by H. M. Schey.

Recall that if f is a function, the gradient of f is given by

∇f =

〈

∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉

.

A useful mnemonic for this (and for the divergence and curl, as it turns out) is to let

∇ =

〈

∂

∂x
,
∂

∂y
,
∂

∂z

〉

,

that is, we pretend that ∇ is a vector with rather odd looking entries. Recalling that

〈u, v, w〉a = 〈ua, va, wa〉, we can then think of the gradient as

∇f =

〈

∂

∂x
,
∂

∂y
,
∂

∂z

〉

f =

〈

∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉

,

that is, we simply multiply the f into the vector.



434 Chapter 16 Vector Calculus

The divergence and curl can now be defined in terms of this same odd vector ∇ by

using the cross product and dot product. The divergence of a vector field F = 〈f, g, h〉 is

∇ · F =

〈

∂

∂x
,
∂

∂y
,
∂

∂z

〉

· 〈f, g, h〉 = ∂f

∂x
+

∂g

∂y
+

∂h

∂z
.

The curl of F is

∇× F =

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

f g h

∣

∣

∣

∣

∣

∣

=

〈

∂h

∂y
− ∂g

∂z
,
∂f

∂z
− ∂h

∂x
,
∂g

∂x
− ∂f

∂y

〉

.

Here are two simple but useful facts about divergence and curl.

THEOREM 16.5.1 ∇ · (∇× F) = 0.

In words, this says that the divergence of the curl is zero.

THEOREM 16.5.2 ∇× (∇f) = 0.

That is, the curl of a gradient is the zero vector. Recalling that gradients are conser-

vative vector fields, this says that the curl of a conservative vector field is the zero vector.

Under suitable conditions, it is also true that if the curl of F is 0 then F is conservative.

(Note that this is exactly the same test that we discussed on page 427.)

EXAMPLE 16.5.3 Let F = 〈ez, 1, xez〉. Then ∇×F = 〈0, ez − ez , 0〉 = 0. Thus, F is

conservative, and we can exhibit this directly by finding the corresponding f .

Since fx = ez, f = xez + g(y, z). Since fy = 1, it must be that gy = 1, so g(y, z) =

y + h(z). Thus f = xez + y + h(z) and

xez = fz = xez + 0 + h′(z),

so h′(z) = 0, i.e., h(z) = C, and f = xez + y + C.

We can rewrite Green’s Theorem using these new ideas; these rewritten versions in

turn are closer to some later theorems we will see.

Suppose we write a two dimensional vector field in the form F = 〈P,Q, 0〉, where P

and Q are functions of x and y. Then

∇× F =

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

P Q 0

∣

∣

∣

∣

∣

∣

= 〈0, 0, Qx − Py〉,

and so (∇× F) · k = 〈0, 0, Qx − Py〉 · 〈0, 0, 1〉 = Qx − Py. So Green’s Theorem says
∫

∂D

F · dr =

∫

∂D

P dx+Qdy =

∫∫

D

Qx − Py dA =

∫∫

D

(∇× F) · k dA. (16.5.1)
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Roughly speaking, the right-most integral adds up the curl (tendency to swirl) at each

point in the region; the left-most integral adds up the tangential components of the vector

field around the entire boundary. Green’s Theorem says these are equal, or roughly, that

the sum of the “microscopic” swirls over the region is the same as the “macroscopic” swirl

around the boundary.

Next, suppose that the boundary ∂D has a vector form r(t), so that r′(t) is tangent to

the boundary, andT = r′(t)/|r′(t)| is the usual unit tangent vector. Writing r = 〈x(t), y(t)〉
we get

T =
〈x′, y′〉
|r′(t)|

and then

N =
〈y′,−x′〉
|r′(t)|

is a unit vector perpendicular to T, that is, a unit normal to the boundary. Now

∫

∂D

F ·N ds =

∫

∂D

〈P,Q〉 · 〈y
′,−x′〉
|r′(t)| |r′(t)|dt =

∫

∂D

Py′ dt−Qx′ dt

=

∫

∂D

P dy −Qdx =

∫

∂D

−Qdx+ P dy.

So far, we’ve just rewritten the original integral using alternate notation. The last integral

looks just like the right side of Green’s Theorem (16.4.1) except that P and Q have traded

places and Q has acquired a negative sign. Then applying Green’s Theorem we get

∫

∂D

−Qdx+ P dy =

∫∫

D

Px +Qy dA =

∫∫

D

∇ · F dA.

Summarizing the long string of equalities,

∫

∂D

F ·N ds =

∫∫

D

∇ · F dA. (16.5.2)

Roughly speaking, the first integral adds up the flow across the boundary of the region,

from inside to out, and the second sums the divergence (tendency to spread) at each point

in the interior. The theorem roughly says that the sum of the “microscopic” spreads is the

same as the total spread across the boundary and out of the region.
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Exercises 16.5.

1. Let F = 〈xy,−xy〉 and let D be given by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Compute

∫

∂D

F · dr and
∫

∂D

F ·N ds. ⇒

2. Let F = 〈ax2, by2〉 and let D be given by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Compute

∫

∂D

F · dr and
∫

∂D

F ·N ds. ⇒

3. Let F = 〈ay2, bx2〉 and let D be given by 0 ≤ x ≤ 1, 0 ≤ y ≤ x. Compute

∫

∂D

F · dr and
∫

∂D

F ·N ds. ⇒

4. Let F = 〈sin x cos y, cosx sin y〉 and let D be given by 0 ≤ x ≤ π/2, 0 ≤ y ≤ x. Compute
∫

∂D

F · dr and

∫

∂D

F ·N ds. ⇒

5. Let F = 〈y,−x〉 and let D be given by x2 + y2 ≤ 1. Compute

∫

∂D

F · dr and

∫

∂D

F ·N ds.

⇒
6. Let F = 〈x, y〉 and let D be given by x2 + y2 ≤ 1. Compute

∫

∂D

F · dr and

∫

∂D

F ·N ds. ⇒

7. Prove theorem 16.5.1.

8. Prove theorem 16.5.2.

9. If ∇ · F = 0, F is said to be incompressible. Show that any vector field of the form
F(x, y, z) = 〈f(y, z), g(x, z), h(x, y)〉 is incompressible. Give a non-trivial example.

16.6 Ve
tor Fun
tions for Surfa
es

We have dealt extensively with vector equations for curves, r(t) = 〈x(t), y(t), z(t)〉. A

similar technique can be used to represent surfaces in a way that is more general than the

equations for surfaces we have used so far. Recall that when we use r(t) to represent a

curve, we imagine the vector r(t) with its tail at the origin, and then we follow the head

of the arrow as t changes. The vector “draws” the curve through space as t varies.

Suppose we instead have a vector function of two variables,

r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉.

As both u and v vary, we again imagine the vector r(u, v) with its tail at the origin, and

its head sweeps out a surface in space. A useful analogy is the technology of CRT video

screens, in which an electron gun fires electrons in the direction of the screen. The gun’s

direction sweeps horizontally and vertically to “paint” the screen with the desired image.

In practice, the gun moves horizontally through an entire line, then moves vertically to the

next line and repeats the operation. In the same way, it can be useful to imagine fixing a
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value of v and letting r(u, v) sweep out a curve as u changes. Then v can change a bit, and

r(u, v) sweeps out a new curve very close to the first. Put enough of these curves together

and they form a surface.

EXAMPLE 16.6.1 Consider the function r(u, v) = 〈v cosu, v sinu, v〉. For a fixed value

of v, as u varies from 0 to 2π, this traces a circle of radius v at height v above the x-y

plane. Put lots and lots of these together,and they form a cone, as in figure 16.6.1.

−20
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−2

2

z

0

3

x0

2y 2

−20
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−2

2

z

0

3

x0

2y 2

Figure 16.6.1 Tracing a surface.

EXAMPLE 16.6.2 Let r = 〈v cosu, v sinu, u〉. If v is constant, the resulting curve is a

helix (as in figure 13.1.1). If u is constant, the resulting curve is a straight line at height

u in the direction u radians from the positive x axis. Note in figure 16.6.2 how the helixes

and the lines both paint the same surface in a different way.

This technique allows us to represent many more surfaces than previously.

EXAMPLE 16.6.3 The curve given by

r = 〈(2 + cos(3u/2)) cosu, (2 + cos(3u/2)) sinu, sin(3u/2)〉

is called a trefoil knot. Recall that from the vector equation of the curve we can compute

the unit tangent T, the unit normal N, and the binormal vector B = T × N; you may

want to review section 13.3. The binormal is perpendicular to both T and N; one way to

interpret this is that N and B define a plane perpendicular to T, that is, perpendicular

to the curve; since N and B are perpendicular to each other, they can function just as i
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Figure 16.6.2 Tracing a surface. (AP)

and j do for the x-y plane. Of course, N and B are functions of u, changing as we move

along the curve r(u). So, for example, c(u, v) = N cos v +B sin v is a vector equation for

a unit circle in a plane perpendicular to the curve described by r, except that the usual

interpretation of c would put its center at the origin. We can fix that simply by adding c

to the original r: let f = r(u) + c(u, v). For a fixed u this draws a circle around the point

r(u); as u varies we get a sequence of such circles around the curve r, that is, a tube of

radius 1 with r at its center. We can easily change the radius; for example r(u) + ac(u, v)

gives the tube radius a; we can make the radius vary as we move along the curve with

r(u)+g(u)c(u, v), where g(u) is a function of u. As shown in figure 16.6.3, it is hard to see

that the plain knot is knotted; the tube makes the structure apparent. Of course, there is

nothing special about the trefoil knot in this example; we can put a tube around (almost)

any curve in the same way.

Figure 16.6.3 Tubes around a trefoil knot, with radius 1/2 and 3 cos(u)/4. (AP)
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We have previously examined surfaces given in the form f(x, y). It is sometimes

useful to represent such surfaces in the more general vector form, which is quite easy:

r(u, v) = 〈u, v, f(u, v)〉. The names of the variables are not important of course; instead

of disguising x and y, we could simply write r(x, y) = 〈x, y, f(x, y)〉.
We have also previously dealt with surfaces that are not functions of x and y; many

of these are easy to represent in vector form. One common type of surface that cannot be

represented as z = f(x, y) is a surface given by an equation involving only x and y. For

example, x+ y = 1 and y = x2 are “vertical” surfaces. For every point (x, y) in the plane

that satisfies the equation, the point (x, y, z) is on the surface, for every value of z. Thus,

a corresponding vector form for the surface is something like 〈f(u), g(u), v〉; for example,

x+ y = 1 becomes 〈u, 1− u, v〉 and y = x2 becomes 〈u, u2, v〉.
Yet another sort of example is the sphere, say x2+y2+z2 = 1. This cannot be written

in the form z = f(x, y), but it is easy to write in vector form; indeed this particular

surface is much like the cone, since it has circular cross-sections, or we can think of it as

a tube around a portion of the z-axis, with a radius that varies depending on where along

the axis we are. One vector expression for the sphere is 〈
√
1− v2 cosu,

√
1− v2 sinu, v〉—

this emphasizes the tube structure, as it is naturally viewed as drawing a circle of radius√
1− v2 around the z-axis at height v. We could also take a cue from spherical coordinates,

and write 〈sinu cos v, sinu sin v, cosu〉, where in effect u and v are φ and θ in disguise.

It is quite simple in Sage to plot any surface for which you have a vector representation.

Using different vector functions sometimes gives different looking plots, because Sage in

effect draws the surface by holding one variable constant and then the other. For example,

you might have noticed in figure 16.6.2 that the curves in the two right-hand graphs are

superimposed on the left-hand graph; the graph of the surface is just the combination of

the two sets of curves, with the spaces filled in with color.

Here’s a simple but striking example: the plane x + y + z = 1 can be represented

quite naturally as 〈u, v, 1− u− v〉. But we could also think of painting the same plane by

choosing a particular point on the plane, say (1, 0, 0), and then drawing circles or ellipses

(or any of a number of other curves) as if that point were the origin in the plane. For

example, 〈1− v cosu− v sinu, v sinu, v cosu〉 is one such vector function. Note that while

it may not be obvious where this came from, it is quite easy to see that the sum of the

x, y, and z components of the vector is always 1. Computer renderings of the plane using

these two functions are shown in figure 16.6.4.

Suppose we know that a plane contains a particular point (x0, y0, z0) and that two

vectors u = 〈u0, u1, u2〉 and v = 〈v0, v1, v2〉 are parallel to the plane but not to each other.

We know how to get an equation for the plane in the form ax + by + cz = d, by first

computing u× v. It’s even easier to get a vector equation:

r(u, v) = 〈x0, y0, z0〉+ uu+ vv.
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Figure 16.6.4 Two representations of the same plane. (AP)

The first vector gets to the point (x0, y0, z0) and then by varying u and v, uu+ vv gets to

every point in the plane.

Returning to x + y + z = 1, the points (1, 0, 0), (0, 1, 0), and (0, 0, 1) are all on the

plane. By subtracting coordinates we see that 〈−1, 0, 1〉 and 〈−1, 1, 0〉 are parallel to the

plane, so a third vector form for this plane is

〈1, 0, 0〉+ u〈−1, 0, 1〉+ v〈−1, 1, 0〉 = 〈1− u− v, v, u〉.

This is clearly quite similar to the first form we found.

We have already seen (section 15.4) how to find the area of a surface when it is defined

in the form f(x, y). Finding the area when the surface is given as a vector function is very

similar. Looking at the plots of surfaces we have just seen, it is evident that the two sets

of curves that fill out the surface divide it into a grid, and that the spaces in the grid are

approximately parallelograms. As before this is the key: we can write down the area of a

typical little parallelogram and add them all up with an integral.

Suppose we want to approximate the area of the surface r(u, v) near r(u0, v0). The

functions r(u, v0) and r(u0, v) define two curves that intersect at r(u0, v0). The deriva-

tives of r give us vectors tangent to these two curves: ru(u0, v0) and rv(u0, v0), and then

ru(u0, v0) du and rv(u0, v0) dv are two small tangent vectors, whose lengths can be used

as the lengths of the sides of an approximating parallelogram. Finally, the area of this

parallelogram is |ru × rv| du dv and so the total surface area is

∫ b

a

∫ d

c

|ru × rv| du dv.
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EXAMPLE 16.6.4 We find the area of the surface 〈v cosu, v sinu, u〉 for 0 ≤ u ≤ π

and 0 ≤ v ≤ 1; this is a portion of the helical surface in figure 16.6.2. We compute

ru = 〈−v sinu, v cosu, 1〉 and rv = 〈cosu, sinu, 0〉. The cross product of these two vectors

is 〈sinu,− cosu, v〉 with length
√
1 + v2, and the surface area is

∫ π

0

∫ 1

0

√

1 + v2 dv du =
π
√
2

2
+

π ln(
√
2 + 1)

2
.

Exercises 16.6.

1. Describe or sketch the surface with the given vector function.

a. r(u, v) = 〈u+ v, 3− v, 1 + 4u+ 5v〉
b. r(u, v) = 〈2 sinu, 3 cosu, v〉
c. r(s, t) = 〈s, t, t2 − s2〉
d. r(s, t) = 〈s sin 2t, s2, s cos 2t〉

2. Find a vector function r(u, v) for the surface.

a. The plane that passes through the point (1, 2,−3) and is parallel to the vectors 〈1, 1,−1〉
and 〈1,−1, 1〉.

b. The lower half of the ellipsoid 2x2 + 4y2 + z2 = 1.

c. The part of the sphere of radius 4 centered at the origin that lies between the planes
z = −2 and z = 2.

3. Find the area of the portion of x+ 2y + 4z = 10 in the first octant. ⇒
4. Find the area of the portion of 2x+ 4y + z = 0 inside x2 + y2 = 1. ⇒
5. Find the area of z = x2 + y2 that lies below z = 1. ⇒
6. Find the area of z =

√

x2 + y2 that lies below z = 2. ⇒
7. Find the area of the portion of x2 + y2 + z2 = a2 that lies in the first octant. ⇒
8. Find the area of the portion of x2 + y2 + z2 = a2 that lies above x2 + y2 ≤ b2, b ≤ a. ⇒
9. Find the area of z = x2 − y2 that lies inside x2 + y2 = a2. ⇒

10. Find the area of z = xy that lies inside x2 + y2 = a2. ⇒
11. Find the area of x2 + y2 + z2 = a2 that lies above the interior of the circle given in polar

coordinates by r = a cos θ. ⇒
12. Find the area of the cone z = k

√

x2 + y2 that lies above the interior of the circle given in
polar coordinates by r = a cos θ. ⇒

13. Find the area of the plane z = ax+ by + c that lies over a region D with area A. ⇒
14. Find the area of the cone z = k

√

x2 + y2 that lies over a region D with area A. ⇒
15. Find the area of the cylinder x2 + z2 = a2 that lies inside the cylinder x2 + y2 = a2. ⇒
16. The surface f(x, y) can be represented with the vector function 〈x, y, f(x, y)〉. Set up the

surface area integral using this vector function and compare to the integral of section 15.4.
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16.7 Surfa
e Integrals

In the integral for surface area,

∫ b

a

∫ d

c

|ru × rv| du dv,

the integrand |ru×rv| du dv is the area of a tiny parallelogram, that is, a very small surface

area, so it is reasonable to abbreviate it dS; then a shortened version of the integral is

∫∫

D

1 · dS.

We have already seen that if D is a region in the plane, the area of D may be computed

with
∫∫

D

1 · dA,

so this is really quite familiar, but the dS hides a little more detail than does dA.

Just as we can integrate functions f(x, y) over regions in the plane, using

∫∫

D

f(x, y) dA,

so we can compute integrals over surfaces in space, using

∫∫

D

f(x, y, z) dS.

In practice this means that we have a vector function r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉 for
the surface, and the integral we compute is

∫ b

a

∫ d

c

f(x(u, v), y(u, v), z(u, v))|ru× rv| du dv.

That is, we express everything in terms of u and v, and then we can do an ordinary double

integral.

EXAMPLE 16.7.1 Suppose a thin object occupies the upper hemisphere of x2 + y2 +

z2 = 1 and has density σ(x, y, z) = z. Find the mass and center of mass of the object.

(Note that the object is just a thin shell; it does not occupy the interior of the hemisphere.)
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We write the hemisphere as r(φ, θ) = 〈cos θ sinφ, sin θ sinφ, cosφ〉, 0 ≤ φ ≤ π/2 and

0 ≤ θ ≤ 2π. So rθ = 〈− sin θ sinφ, cos θ sinφ, 0〉 and rφ = 〈cos θ cosφ, sin θ cosφ,− sinφ〉.
Then

rθ × rφ = 〈− cos θ sin2 φ,− sin θ sin2 φ,− cosφ sinφ〉

and

|rθ × rφ| = | sinφ| = sinφ,

since we are interested only in 0 ≤ φ ≤ π/2. Finally, the density is z = cosφ and the

integral for mass is
∫ 2π

0

∫ π/2

0

cosφ sinφ dφ dθ = π.

By symmetry, the center of mass is clearly on the z-axis, so we only need to find the

z-coordinate of the center of mass. The moment around the x-y plane is

∫ 2π

0

∫ π/2

0

z cosφ sinφ dφ dθ =

∫ 2π

0

∫ π/2

0

cos2 φ sinφ dφ dθ =
2π

3
,

so the center of mass is at (0, 0, 2/3).

Now suppose that F is a vector field; imagine that it represents the velocity of some

fluid at each point in space. We would like to measure how much fluid is passing through

a surface D, the flux across D. As usual, we imagine computing the flux across a very

small section of the surface, with area dS, and then adding up all such small fluxes over D

with an integral. Suppose that vector N is a unit normal to the surface at a point; F ·N
is the scalar projection of F onto the direction of N, so it measures how fast the fluid is

moving across the surface. In one unit of time the fluid moving across the surface will fill a

volume of F ·N dS, which is therefore the rate at which the fluid is moving across a small

patch of the surface. Thus, the total flux across D is

∫∫

D

F ·N dS =

∫∫

D

F · dS,

defining dS = N dS. As usual, certain conditions must be met for this to work out; chief

among them is the nature of the surface. As we integrate over the surface, we must choose

the normal vectors N in such a way that they point “the same way” through the surface.

For example, if the surface is roughly horizontal in orientation, we might want to measure

the flux in the “upwards” direction, or if the surface is closed, like a sphere, we might want

to measure the flux “outwards” across the surface. In the first case we would choose N to

have positive z component, in the second we would make sure that N points away from the



444 Chapter 16 Vector Calculus

origin. Unfortunately, there are surfaces that are not orientable: they have only one side,

so that it is not possible to choose the normal vectors to point in the “same way” through

the surface. The most famous such surface is the Möbius strip shown in figure 16.7.1. It

is quite easy to make such a strip with a piece of paper and some tape. If you have never

done this, it is quite instructive; in particular, you should draw a line down the center of

the strip until you return to your starting point. No matter how unit normal vectors are

assigned to the points of the Möbius strip, there will be normal vectors very close to each

other pointing in opposite directions.

Figure 16.7.1 A Möbius strip. (AP)

Assuming that the quantities involved are well behaved, however, the flux of the vector

field across the surface r(u, v) is

∫∫

D

F ·N dS =

∫∫

D

F · ru × rv

|ru × rv|
|ru × rv| dA =

∫∫

D

F · (ru × rv) dA.

In practice, we may have to use rv ×ru or even something a bit more complicated to make

sure that the normal vector points in the desired direction.

EXAMPLE 16.7.2 Compute the flux of F = 〈x, y, z4〉 across the cone z =
√

x2 + y2,

0 ≤ z ≤ 1, in the downward direction.

We write the cone as a vector function: r = 〈v cosu, v sinu, v〉, 0 ≤ u ≤ 2π and

0 ≤ v ≤ 1. Then ru = 〈−v sinu, v cosu, 0〉 and rv = 〈cosu, sinu, 1〉 and ru × rv =
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〈v cosu, v sinu,−v〉. The third coordinate −v is negative, which is exactly what we desire,

that is, the normal vector points down through the surface. Then

∫ 2π

0

∫ 1

0

〈x, y, z4〉 · 〈v cosu, v sinu,−v〉 dv du =

∫ 2π

0

∫ 1

0

xv cosu+ yv sinu− z4v dv du

=

∫ 2π

0

∫ 1

0

v2 cos2 u+ v2 sin2 u− v5 dv du

=

∫ 2π

0

∫ 1

0

v2 − v5 dv du =
π

3
.

Exercises 16.7.

1. Find the center of mass of an object that occupies the upper hemisphere of x2 + y2 + z2 = 1
and has density x2 + y2. ⇒

2. Find the center of mass of an object that occupies the surface z = xy, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
and has density

√

1 + x2 + y2. ⇒
3. Find the center of mass of an object that occupies the surface z =

√

x2 + y2, 1 ≤ z ≤ 4 and
has density x2z. ⇒

4. Find the centroid of the surface of a right circular cone of height h and base radius r, not
including the base. ⇒

5. Evaluate

∫∫

D

〈2,−3, 4〉 · N dS, where D is given by z = x2 + y2, −1 ≤ x ≤ 1, −1 ≤ y ≤ 1,

oriented up. ⇒

6. Evaluate

∫∫

D

〈x, y, 3〉 ·NdS, where D is given by z = 3x− 5y, 1 ≤ x ≤ 2, 0 ≤ y ≤ 2, oriented

up. ⇒

7. Evaluate

∫∫

D

〈x, y,−2〉 ·N dS, where D is given by z = 1−x2 − y2, x2 + y2 ≤ 1, oriented up.

⇒
8. Evaluate

∫∫

D

〈xy, yz, zx〉 ·N dS, where D is given by z = x + y2 + 2, 0 ≤ x ≤ 1, x ≤ y ≤ 1,

oriented up. ⇒

9. Evaluate

∫∫

D

〈ex, ey, z〉 ·N dS, where D is given by z = xy, 0 ≤ x ≤ 1, −x ≤ y ≤ x, oriented

up. ⇒

10. Evaluate

∫∫

D

〈xz, yz, z〉 ·N dS, where D is given by z = a2 − x2 − y2, x2 + y2 ≤ b2, oriented

up. ⇒
11. A fluid has density 870 kg/m3 and flows with velocity v = 〈z, y2, x2〉, where distances are

in meters and the components of v are in meters per second. Find the rate of flow outward
through the portion of the cylinder x2 + y2 = 4, 0 ≤ z ≤ 1 for which y ≥ 0. ⇒
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12. Gauss’s Law says that the net charge, Q, enclosed by a closed surface, S, is

Q = ǫ0

∫∫

E ·N dS

where E is an electric field and ǫ0 (the permittivity of free space) is a known constant; N is
oriented outward. Use Gauss’s Law to find the charge contained in the cube with vertices
(±1,±1,±1) if the electric field is E = 〈x, y, z〉. ⇒

16.8 Stokes's Theorem

Recall that one version of Green’s Theorem (see equation 16.5.1) is
∫

∂D

F · dr =
∫∫

D

(∇×F) · k dA.

Here D is a region in the x-y plane and k is a unit normal to D at every point. If D is

instead an orientable surface in space, there is an obvious way to alter this equation, and

it turns out still to be true:

THEOREM 16.8.1 Stokes’s Theorem Provided that the quantities involved are

sufficiently nice, and in particular if D is orientable,
∫

∂D

F · dr =

∫∫

D

(∇×F) ·N dS,

if ∂D is oriented counter-clockwise relative to N.

Note how little has changed: k becomes N, a unit normal to the surface, and dA

becomes dS, since this is now a general surface integral. The phrase “counter-clockwise

relative to N” means roughly that if we take the direction of N to be “up”, then we go

around the boundary counter-clockwise when viewed from “above”. In many cases, this

description is inadequate. A slightly more complicated but general description is this:

imagine standing on the side of the surface considered positive; walk to the boundary and

turn left. You are now following the boundary in the correct direction.

EXAMPLE 16.8.2 Let F = 〈exy cos z, x2z, xy〉 and the surface D be x =
√

1− y2 − z2,

oriented in the positive x direction. It quickly becomes apparent that the surface integral

in Stokes’s Theorem is intractable, so we try the line integral. The boundary of D is the

unit circle in the y-z plane, r = 〈0, cosu, sinu〉, 0 ≤ u ≤ 2π. The integral is

∫ 2π

0

〈exy cos z, x2z, xy〉 · 〈0,− sinu, cosu〉 du =

∫ 2π

0

0 du = 0,

because x = 0.
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EXAMPLE 16.8.3 Consider the cylinder r = 〈cosu, sinu, v〉, 0 ≤ u ≤ 2π, 0 ≤ v ≤ 2,

oriented outward, and F = 〈y, zx, xy〉. We compute

∫∫

D

∇× F ·N dS =

∫

∂D

F · dr

in two ways.

First, the double integral is

∫ 2π

0

∫ 2

0

〈0,− sinu, v − 1〉 · 〈cosu, sinu, 0〉 dv du =

∫ 2π

0

∫ 2

0

− sin2 u dv du = −2π.

The boundary consists of two parts, the bottom circle 〈cos t, sin t, 0〉, with t ranging

from 0 to 2π, and 〈cos t, sin t, 2〉, with t ranging from 2π to 0. We compute the correspond-

ing integrals and add the results:

∫ 2π

0

− sin2 t dt+

∫ 0

2π

− sin2 t+ 2 cos2 t = −π − π = −2π,

as before.

An interesting consequence of Stokes’s Theorem is that if D and E are two orientable

surfaces with the same boundary, then

∫∫

D

(∇×F) ·N dS =

∫

∂D

F · dr =

∫

∂E

F · dr =

∫∫

E

(∇×F) ·N dS.

Sometimes both of the integrals

∫∫

D

(∇× F) ·N dS and

∫

∂D

F · dr

are difficult, but you may be able to find a second surface E so that

∫∫

E

(∇× F) ·N dS

has the same value but is easier to compute.

EXAMPLE 16.8.4 In example 16.8.2 the line integral was easy to compute. But we

might also notice that another surface E with the same boundary is the flat disk y2+z2 ≤ 1,
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given by r = 〈0, v cosu, v sinu〉. The normal is rv × ru = 〈v, 0, 0〉. We compute the curl:

∇× F = 〈x− x2,−exy sin z − y, 2xz − xexy cos z〉.

Since x = 0 everywhere on the surface,

(∇×F) ·N = 〈0,− sin z − y, 0〉 · 〈v, 0, 0〉 = 0,

so the surface integral is
∫∫

E

0 dS = 0,

as before. In this case, of course, it is still somewhat easier to compute the line integral,

avoiding ∇× F entirely.

EXAMPLE 16.8.5 Let F = 〈−y2, x, z2〉, and let the curve C be the intersection of the

cylinder x2 + y2 = 1 with the plane y + z = 2, oriented counter-clockwise when viewed

from above. We compute

∫

C

F · dr in two ways.

First we do it directly: a vector function for C is r = 〈cosu, sinu, 2 − sinu〉, so

r′ = 〈− sinu, cosu,− cosu〉, and the integral is then

∫ 2π

0

y2 sinu+ x cosu− z2 cosu du =

∫ 2π

0

sin3 u+ cos2 u− (2− sinu)2 cosu du = π.

To use Stokes’s Theorem, we pick a surface with C as the boundary; the simplest

such surface is that portion of the plane y + z = 2 inside the cylinder. This has vector

equation r = 〈v cosu, v sinu, 2 − v sinu〉. We compute ru = 〈−v sinu, v cosu,−v cosu〉,
rv = 〈cosu, sinu,− sinu〉, and ru × rv = 〈0,−v,−v〉. To match the orientation of C we

need to use the normal 〈0, v, v〉. The curl of F is 〈0, 0, 1+2y〉 = 〈0, 0, 1+2v sinu〉, and the

surface integral from Stokes’s Theorem is

∫ 2π

0

∫ 1

0

(1 + 2v sinu)v dv du = π.

In this case the surface integral was more work to set up, but the resulting integral is

somewhat easier.
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Proof of Stokes’s Theorem. We can prove here a special case of Stokes’s Theorem,

which perhaps not too surprisingly uses Green’s Theorem.

Suppose the surface D of interest can be expressed in the form z = g(x, y), and let

F = 〈P,Q,R〉. Using the vector function r = 〈x, y, g(x, y)〉 for the surface we get the

surface integral
∫∫

D

∇× F · dS =

∫∫

E

〈Ry −Qz, Pz −Rx, Qx − Py〉 · 〈−gx,−gy, 1〉 dA

=

∫∫

E

−Rygx +Qzgx − Pzgy +Rxgy +Qx − Py dA.

Here E is the region in the x-y plane directly below the surface D.

For the line integral, we need a vector function for ∂D. If 〈x(t), y(t)〉 is a vector

function for ∂E then we may use r(t) = 〈x(t), y(t), g(x(t), y(t))〉 to represent ∂D. Then
∫

∂D

F · dr =
∫ b

a

P
dx

dt
+Q

dy

dt
+R

dz

dt
dt =

∫ b

a

P
dx

dt
+Q

dy

dt
+R

(

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt

)

dt.

using the chain rule for dz/dt. Now we continue to manipulate this:
∫ b

a

P
dx

dt
+Q

dy

dt
+R

(

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt

)

dt

=

∫ b

a

[(

P +R
∂z

∂x

)

dx

dt
+

(

Q+R
∂z

∂y

)

dy

dt

]

dt

=

∫

∂E

(

P +R
∂z

∂x

)

dx+

(

Q+R
∂z

∂y

)

dy,

which now looks just like the line integral of Green’s Theorem, except that the functions

P and Q of Green’s Theorem have been replaced by the more complicated P +R(∂z/∂x)

and Q+R(∂z/∂y). We can apply Green’s Theorem to get
∫

∂E

(

P +R
∂z

∂x

)

dx+

(

Q+R
∂z

∂y

)

dy =

∫∫

E

∂

∂x

(

Q+R
∂z

∂y

)

− ∂

∂y

(

P +R
∂z

∂x

)

dA.

Now we can use the chain rule again to evaluate the derivatives inside this integral, and it

becomes
∫∫

E

Qx +Qzgx +Rxgy +Rzgxgy +Rgyx − (Py + Pzgy +Rygx +Rzgygx +Rgxy) dA

=

∫∫

E

Qx +Qzgx +Rxgy − Py − Pzgy −Rygx dA,

which is the same as the expression we obtained for the surface integral.
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Exercises 16.8.

1. Let F = 〈z, x, y〉. The plane z = 2x + 2y − 1 and the paraboloid z = x2 + y2 intersect in a
closed curve. Stokes’s Theorem implies that

∫∫

D1

(∇× F) ·N dS =

∮

C

F · dr =

∫∫

D2

(∇× F) ·N dS,

where the line integral is computed over the intersection C of the plane and the paraboloid,
and the two surface integrals are computed over the portions of the two surfaces that have
boundary C (provided, of course, that the orientations all match). Compute all three inte-
grals. ⇒

2. Let D be the portion of z = 1 − x2 − y2 above the x-y plane, oriented up, and let F =

〈xy2,−x2y, xyz〉. Compute

∫∫

D

(∇× F) ·N dS. ⇒

3. Let D be the portion of z = 2x+ 5y inside x2 + y2 = 1, oriented up, and let F = 〈y, z,−x〉.
Compute

∫

∂D

F · dr. ⇒

4. Compute

∮

C

x2z dx+ 3xdy − y3 dz, where C is the unit circle x2 + y2 = 1 oriented counter-

clockwise. ⇒
5. Let D be the portion of z = px + qy + r over a region in the x-y plane that has area A,

oriented up, and let F = 〈ax+ by + cz, ax+ by + cz, ax+ by + cz〉. Compute

∫

∂D

F · dr. ⇒

6. Let D be any surface and let F = 〈P (x), Q(y), R(z)〉 (P depends only on x, Q only on y,

and R only on z). Show that

∫

∂D

F · dr = 0.

7. Show that

∫

C

f∇g + g∇f · dr = 0, where r describes a closed curve C to which Stokes’s

Theorem applies. (See theorems 12.4.1 and 16.5.2.)

16.9 The Divergen
e Theorem

The third version of Green’s Theorem (equation 16.5.2) we saw was:

∫

∂D

F ·N ds =

∫∫

D

∇ · F dA.

With minor changes this turns into another equation, the Divergence Theorem:

THEOREM 16.9.1 Divergence Theorem Under suitable conditions, if E is a

region of three dimensional space and D is its boundary surface, oriented outward, then

∫∫

D

F ·N dS =

∫∫∫

E

∇ ·F dV.
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Proof. Again this theorem is too difficult to prove here, but a special case is easier. In

the proof of a special case of Green’s Theorem, we needed to know that we could describe

the region of integration in both possible orders, so that we could set up one double integral

using dx dy and another using dy dx. Similarly here, we need to be able to describe the

three-dimensional region E in different ways.

We start by rewriting the triple integral:

∫∫∫

E

∇ ·F dV =

∫∫∫

E

(Px +Qy +Rz) dV =

∫∫∫

E

Px dV +

∫∫∫

E

Qy dV +

∫∫∫

E

Rz dV.

The double integral may be rewritten:

∫∫

D

F ·N dS =

∫∫

D

(P i+Qj+Rk) ·N dS =

∫∫

D

P i ·N dS+

∫∫

D

Qj ·N dS+

∫∫

D

Rk ·N dS.

To prove that these give the same value it is sufficient to prove that
∫∫

D

P i ·N dS =

∫∫∫

E

Px dV,

∫∫

D

Qj ·N dS =

∫∫∫

E

Qy dV, and (16.9.1)

∫∫

D

Rk ·N dS =

∫∫∫

E

Rz dV.

Not surprisingly, these are all pretty much the same; we’ll do the first one.

We set the triple integral up with dx innermost:

∫∫∫

E

Px dV =

∫∫

B

∫ g2(y,z)

g1(y,z)

Px dx dA =

∫∫

B

P (g2(y, z), y, z)− P (g1(y, z), y, z) dA,

where B is the region in the y-z plane over which we integrate. The boundary surface of

E consists of a “top” x = g2(y, z), a “bottom” x = g1(y, z), and a “wrap-around side”

that is vertical to the y-z plane. To integrate over the entire boundary surface, we can

integrate over each of these (top, bottom, side) and add the results. Over the side surface,

the vector N is perpendicular to the vector i, so

∫∫

side

P i ·N dS =

∫∫

side

0 dS = 0.

Thus, we are left with just the surface integral over the top plus the surface integral

over the bottom. For the top, we use the vector function r = 〈g2(y, z), y, z〉 which gives
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ry × rz = 〈1,−g2y,−g2z〉; the dot product of this with i = 〈1, 0, 0〉 is 1. Then
∫∫

top

P i ·N dS =

∫∫

B

P (g2(y, z), y, z) dA.

In almost identical fashion we get

∫∫

bottom

P i ·N dS = −
∫∫

B

P (g1(y, z), y, z) dA,

where the negative sign is needed to make N point in the negative x direction. Now

∫∫

D

P i ·N dS =

∫∫

B

P (g2(y, z), y, z) dA−
∫∫

B

P (g1(y, z), y, z) dA,

which is the same as the value of the triple integral above.

EXAMPLE 16.9.2 Let F = 〈2x, 3y, z2〉, and consider the three-dimensional volume

inside the cube with faces parallel to the principal planes and opposite corners at (0, 0, 0)

and (1, 1, 1). We compute the two integrals of the divergence theorem.

The triple integral is the easier of the two:

∫ 1

0

∫ 1

0

∫ 1

0

2 + 3 + 2z dx dy dz = 6.

The surface integral must be separated into six parts, one for each face of the cube. One

face is z = 0 or r = 〈u, v, 0〉, 0 ≤ u, v ≤ 1. Then ru = 〈1, 0, 0〉, rv = 〈0, 1, 0〉, and
ru × rv = 〈0, 0, 1〉. We need this to be oriented downward (out of the cube), so we use

〈0, 0,−1〉 and the corresponding integral is

∫ 1

0

∫ 1

0

−z2 du dv =

∫ 1

0

∫ 1

0

0 du dv = 0.

Another face is y = 1 or r = 〈u, 1, v〉. Then ru = 〈1, 0, 0〉, rv = 〈0, 0, 1〉, and ru × rv =

〈0,−1, 0〉. We need a normal in the positive y direction, so we convert this to 〈0, 1, 0〉, and
the corresponding integral is

∫ 1

0

∫ 1

0

3y du dv =

∫ 1

0

∫ 1

0

3 du dv = 3.

The remaining four integrals have values 0, 0, 2, and 1, and the sum of these is 6, in

agreement with the triple integral.
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EXAMPLE 16.9.3 Let F = 〈x3, y3, z2〉, and consider the cylindrical volume x2+y2 ≤ 9,

0 ≤ z ≤ 2. The triple integral (using cylindrical coordinates) is

∫ 2π

0

∫ 3

0

∫ 2

0

(3r2 + 2z)r dz dr dθ = 279π.

For the surface we need three integrals. The top of the cylinder can be represented

by r = 〈v cosu, v sinu, 2〉; ru × rv = 〈0, 0,−v〉, which points down into the cylinder, so we

convert it to 〈0, 0, v〉. Then

∫ 2π

0

∫ 3

0

〈v3 cos3 u, v3 sin3 u, 4〉 · 〈0, 0, v〉 dv du =

∫ 2π

0

∫ 3

0

4v dv du = 36π.

The bottom is r = 〈v cosu, v sinu, 0〉; ru × rv = 〈0, 0,−v〉 and

∫ 2π

0

∫ 3

0

〈v3 cos3 u, v3 sin3 u, 0〉 · 〈0, 0,−v〉 dv du =

∫ 2π

0

∫ 3

0

0 dv du = 0.

The side of the cylinder is r = 〈3 cosu, 3 sinu, v〉; ru × rv = 〈3 cosu, 3 sinu, 0〉 which does

point outward, so

∫ 2π

0

∫ 2

0

〈27 cos3 u, 27 sin3 u, v2〉 · 〈3 cosu, 3 sinu, 0〉 dv du

=

∫ 2π

0

∫ 2

0

81 cos4 u+ 81 sin4 u dv du = 243π.

The total surface integral is thus 36π + 0 + 243π = 279π.

Exercises 16.9.

1. Using F = 〈3x, y3,−2z2〉 and the region bounded by x2 + y2 = 9, z = 0, and z = 5, compute
both integrals from the Divergence Theorem. ⇒

2. Let E be the volume described by 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c, and F = 〈x2, y2, z2〉.
Compute

∫∫

∂E

F ·N dS. ⇒

3. Let E be the volume described by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1, and F =

〈2xy, 3xy, zex+y〉. Compute

∫∫

∂E

F ·N dS. ⇒

4. Let E be the volume described by 0 ≤ x ≤ 1, 0 ≤ y ≤ x, 0 ≤ z ≤ x+ y, and F = 〈x, 2y, 3z〉.
Compute

∫∫

∂E

F ·N dS. ⇒
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5. Let E be the volume described by x2 + y2 + z2 ≤ 4, and F = 〈x3, y3, z3〉. Compute

∫∫

∂E

F ·

N dS. ⇒
6. Let E be the hemisphere described by 0 ≤ z ≤

√

1− x2 − y2, and

F = 〈
√

x2 + y2 + z2,
√

x2 + y2 + z2,
√

x2 + y2 + z2〉. Compute

∫∫

∂E

F ·N dS. ⇒

7. Let E be the volume described by x2 + y2 ≤ 1, 0 ≤ z ≤ 4, and F = 〈xy2, yz, x2z〉. Compute
∫∫

∂E

F ·N dS. ⇒

8. Let E be the solid cone above the x-y plane and inside z = 1 −
√

x2 + y2, and F =

〈x cos2 z, y sin2 z,
√

x2 + y2z〉. Compute

∫∫

∂E

F ·N dS. ⇒

9. Prove the other two equations in the display 16.9.1.

10. Suppose D is a closed surface, and that D and F are sufficiently nice. Show that
∫∫

D

(∇× F) ·N dS = 0

where N is the outward pointing unit normal.

11. Suppose D is a closed surface, D is sufficiently nice, and F = 〈a, b, c〉 is a constant vector
field. Show that

∫∫

D

F ·N dS = 0

where N is the outward pointing unit normal.

12. We know that the volume of a region E may often be computed as

∫∫∫

E

dx dy dz. Show that

this volume may also be computed as
1

3

∫∫

∂E

〈x, y, z〉 ·N dS where N is the outward pointing

unit normal to ∂E.



2
Fourier Series and Fourier Transform

2.1 INTRODUCTION

Fourier series is used to get frequency spectrum of a time-domain signal, when signal is a periodic function of
time. We have seen that the sum of two sinusoids is periodic provided their frequencies are integer multiple
of a fundamental frequency,w0.

2.2 TRIGONOMETRIC FOURIER SERIES

Consider a signalx(t), a sum of sine and cosine function whose frequencies are integral multiple ofw0

x(t) = a0 +a1cos(w0t)+a2cos(2w0t)+ · · ·
b1sin(w0t)+b2sin(2w0t)+ · · ·

x(t) = a0 +
∞

∑
n=1

(an cos(nw0t)+bn sin(nw0t)) (1)

a0, a1, . . . , b1, b2, . . . are constants andw0 is the fundamental frequency.

Evaluation of Fourier Coefficients
To evaluatea0 we shall integrate both sides of eqn. (1) over one period(t0, t0 + T ) of x(t) at an arbitrary
time t0

t0+T∫

t0

x(t)dt =

t0+T∫

t0

a0dt +
∞

∑
n=1

an

t0+T∫

t0

cos(nw0t)dt +
∞

∑
n=1

bn

t0+T∫

t0

sin(nw0t)dt

Since
∫ t0+T

t0
cos(nw0dt) = 0

t0+T∫

t0

sin(nw0dt) = 0

a0 =
1
T

t0+T∫

t0

x(t)dt (2)

To evaluatean andbn, we use the following result:

t0+T∫

t0

cos(nw0t)cos(mw0t)dt =

{
0 m 6= n
T/2 m = n 6= 0

94
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Multiply eqn. (1) by sin(mw0t) and integrate over one period

t0+T∫

t0

x(t)sin(mw0t)dt = a0

t0+T∫

t0

sin(mw0t)dt +
∞

∑
n=1

an

t0+T∫

t0

cos(nw0t)sin(mw0t)dt +

∞

∑
n=1

bn

t0+T∫

t0

sin(mw0t)sin(nw0t)dt

bn =
2
T

t0+T∫

t0

x(t)sin(nw0t)dt (4)

Example 1:

−3 −2 −1

− −1.0

1.0

1 2 30

−

Fig. 2.1 .

T →−1 to 1 T = 2 w0 = π x(t) = t,−1 < t < 1

a0 =
1
2

1∫

−1

t dt =
1
4
(1−1) = 0

an = 0

bn =

1∫

−1

t sin πntdt =

[−t cosπnt
nπ

− cosπnt
nπ

]1

−1

=
−1
nπ

[t cosπnt +cosπnt]1−1 =− 1
nπ

[2cosπ+cosπ−cosπ]

bn =
−2
nπ

cosnπ =
2
π

[−(−1)n

n

]

b1 b2 b3 b4 b5 b6

2
π
−2
2π

2
3π

−2
4π

2
5π

−2· · ·
6π

x(t) =
∞

∑
n=1

2
π

[−(−1)n

n

]

sin nπt

=
2
π

[

sin πt− 1
2

sin 2πt +
1
3

sin 3πt− 1
4

sin 4πt + · · ·
]
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Example 2:

−2π

 1.0

2π 4π 6π0 t

Fig. 2.2 .

x(t) =
t

2π
T = 2π w0 =

2π
T

= 1

a0 =
1
T

2π∫

0

x(t)dt =
1

4π2

[
1
2

t2
]2π

0
=

1
2

an =
2

4π2

2π∫

0

t cosntdt =
1

2π2

[
t sin t

n
+

sin nt
n

]2π

0

=
1

2π2

[
2πsin 2nπ

n
+

sin 2nπ
n

]

= 0

bn =
2

4π2

2π∫

0

t sin ntdt =
−1
2π2

[ t cosnt
n

+
cosnt

n

]2π

0

=
−1
2π2

[
2πcos 2nπ

n
+

cos 2nπ
n

− 1
n

]

bn =
−1
nπ

x(t) =
1
2

+
∞

∑
n=1

(−1
nπ

)

sin nt =
1
2

+
1
π

∞

∑
n=1

1
n

cos(nt +π/2)

=
1
2
− 1

π

[

sin t +
sin 2t

2
+

sin 3t
3

+ · · ·
]

Example 3:

−T/2 −T/4 T/4

A x(t)

tT/2

Fig. 2.3 . Rectangular waveform
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Figure shows a periodic rectangular waveform which is symmetrical to the vertical axis. Obtain its F.S.
representation.

x(t) = a0 +
∞

∑
n=1

(an cosnw0t +bn sin nw0t)

x(t) = a0 +
∞

∑
n=1

an cos(nw0t) bn = 0

x(t) = 0 for
−T
2

< t <
−T
4

+A for
−T
4

< t <
T
4

0 for
T
4

< t <
T
2

a0 =
1
T

T/4∫

−T/4

Adt =
A
2

an =
2
T

T/4∫

−T/4

Acos(nw0t)dt =
2A

T nw0

[

sin nw0
T
4

+sin nw0
T
4

]

an =
4A
2πn

sin
(nπ

2

)

=
2A
πn

sin
(nπ

2

)

w0 =
2π
T

a1 =
4A
2π

=
2A
π

a2 = 0

a3 =
2A
3π

sin
3π
2

=
2A
3π

(−1) =
−2A
3π

x(t) =
A
2

+
2A
π

(

cosw0t− 1
3

cos 3w0t +
1
5

cos 5w0t + · · ·
)

Example 4: Find the trigonometric Fourier series for the periodic signal x(t).

1.0

0 1−1−3−5−7−9

x(t)

3 5 7 9 11 t

T

Fig. 2.4 .
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SOLUTION :

bn = 0 x(t) =

{

1 −1 < t < 1

−1 1< t < 3

a0 =
1
T

3∫

−1

x(t)dt =
1
T





1∫

−1

dt +

3∫

t

(−1)dt



 T = 4

=
1
T

[2−2] = 0 ∴ w0 =
2π
T

=
2π
4

=
π
2

an =
2
T





1∫

−1

cos(nw0t)dt +

3∫

1

cos(nw0t)dt





=
2

2πn

{[

2sin
πn
2

]

−
[

sin
3nπ
2
−sin

nπ
2

]}

=
1

nπ

[

3sin
nπ
2
−sin

3nπ
2

]

sin
3nπ
2

= sin
(

π+
nπ
2

)

=−sin
nπ
2

an =
4

nπ
sin
(nπ

2

)

an =







0 n = even
4

nπ
n = 1,5,9,13

−4
nπ

n = 3,7,11,15

x(t) =
4
π

cos
(π

2
t
)

− 4
3π

cos

(
3π
2

t

)

+
4
5π

cos

(
5π
2

t

)

− 4
7π

cos

(
7π
2

t

)

+ · · ·

x(t) =
4
π

[

cos
(π

2
t
)

− 1
3

cos

(
3π
2

t

)

+
1
5

cos

(
5π
2

t

)

· · ·
]

Example 5: Find the F.S.C. for the continuous-time periodic signal

x(t) = 1.5 0≤ t < 1

=−1.5 1≤ t < 2

with fundamental freq.w0 = π

−1.5

1.5

0 1

x(t)

32 54

Fig. 2.5 .
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SOLUTION :

T =
2π
w0

= 2, w0 = π

a0 = an = 0

bn =

1∫

0

1.5sinnπtdt−
2∫

1

1.5sinnπtdt

=
1.5
nπ

{

[−cosnπ+1]+ [cos2nπ−cosnπ]
}

bn =
3

nπ
[1−cosnπ]

x(t) =
3
π

[

2sinπt +
2
3

sin3πt +
2
5

sin5πt + · · ·
]

6
π

[

sinπt +
1
3

sin3πt +
1
5

sin5πt + · · ·
]

C0 =
1
2





1∫

0

1.5dt−1.5

2∫

1

dt



= 0

OR

By using complex exponential Fourier series

Cn =
1
2





1∫

0

1.5e− jnπtdt−1.5

2∫

1

e− jnπtdt





Cn =
3

−4 jnπ




e− jnπt

∣
∣
∣
∣
∣
∣

1
−e− jnπt

0

∣
∣
∣
∣
∣
∣

2

1






=
−3

4 jnπ
[
e− jnπ−1− e− j2nπ + e− jnπ]

=
3

2 jnπ
[
1− e− jnπ]=

3
2 jnπ

[1−cosnπ]

x(t) =
∞

∑
n=−∞

Cne− jnπt

∞

∑
n=−∞

3
2 jnπ

[
1− e− jnπ]e jnπt

=
∞

∑
n=−∞

3
2 jnπ

[
e jnπt − e jnπt cosπn

]
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for n = 1

=
A
2π

π∫

0

sin t sin tdt =
A
2π

π∫

0

(1−cos2t)dt

=
A
2π

[π] =
A
2

Whenn is even

=
A
2π

[
2

n+1
− 2

1−n

]

=
2A

π(1−n2)

Example 7:

−2−3 −1

−2

 2

1 2

T

30

x(t)

a

b

t

Fig. 2.7 .
SOLUTION :

T = 2 w0 =
2π
T

= π

x(t) =

{
2t −1 < t < 1
0

Point (a)(−1,−2)

Point (b)(1,2)

y− (−2) =
2− (−2)

1− (−1)
(x− (−1))

y+2 =
4
2
(x+1)

y+2 = 2x+2

y = 2x

x(t) = 2t

Since function is an odd function

an = 0, a0 =
1
T

1∫

−1

2tdt =
1
2
×0 = 0

bn =
2
T

1∫

−1

t sin(nπt)dt =
2
T




−t cosnπt

nπ

∣
∣
∣
∣
∣

1

−1

+
1

n2π2 cosnπt

∣
∣
∣
∣
∣

1

−1




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2.3 CONVERGENCE OF FOURIER SERIES – DIRICHLET CONDITIONS

Existence of Fourier Series: The conditions under which a periodic signal can be represented by an F.S.
are known as Dirichlet conditions. F.P.→ Fundamental Period

(1) The functionx(t) has only a finite number of maxima and minima, if any within theF.P.
(2) The functionx(t) has only a finite number of discontinuities, if any within theF.P.
(3) The functionx(t) is absolutely integrable over one period, that is

T∫

0

∣
∣x(t)

∣
∣dt < ∞

2.4 PROPERTIES OF CONTINUOUS FOURIER SERIES

(1) Linearity: If x1(t) andx2(t) are two periodic signals with periodT with F.S.C.Cn andDn then F.C. of
linear combination ofx1(t) andx2(t) are given by

FS[Ax1(t)+Bx2(t)] = ACn +BDn

Proof: If z(t) = Ax1(t)+Bx2(t)

an =
1
T

t0+T∫

t0

[Ax1(t)+Bx2(t)]e
− jnw0t =

A
T

∫

T

x1(t)e
− jnw0tdt +

B
T

∫

T

x2(t)e
− jnw0tdt

an = ACn +BDn

(2) Time shifting: If the F.S.C. ofx(t) areCn then the F.C. of the shifted signalx(t− t0) are

FS[x(t− t0)] = e− jnw0 t0Cn

Let t− t0 = τ

dt = dτ

Bn =
1
T

∫

T

x(t− t0)e
− jnw0tdt

=
1
T

∫

T

x(τ)e− jnw0(t0+τ)dτ =
1
T

∫

T

x(τ)e− jnw0τdτ · e− jnw0t0

Bn = e− jnw
0

t
0 ·Cn

(3) Time reversal: FS[x(−t)] = C−n

Bn =
1
T

∫

T

x(−t)e− jnw0tdt =
1
T

∫

T

x(−t)e− j(−n)w0T dt

−t = τ

dt =−dτ

=
1
T

∫

−T

x(τ)e− j(−n)w0τdτ = C−n
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Example 8: Compute the exponential series of the following signal.

−5 −4 −3 −2 −1 0 1

T

1.0

2.0

x(t)

2 3 4 5 6 t

Fig. 2.8 .

SOLUTION :

T = 4 w0 =
π
2

C0 =
1
T

T∫

0

x(t)dt =
1
4





1∫

0

2dt +

2∫

1

dt



=
3
4

Cn =
1
4





1∫

0

2e
− jn

πt
2 dt +

2∫

1

e− jn πt
2 dt





=
1
4







−4
jnπ



e
− jn

π
2 −1



− 2
jnπ

[

e− jnπ− e− jn π
2

]







=
−1

2 jnπ



2e
− jnπ

2 −2+ e− jnπ− e
− jn

π
2



=
−1

2 jnπ



e
− jn

π
2 + e

− jn
π
2 −2





=− 1
jnπ

[

1− 1
2
(−1)n− 1

2
e− jn π

2

]

x(t) =
3
4

+
∞

∑
n=−∞

1
jnπ

[

e jn π
2 − 1

2
(−1)ne jn π

2 − 1
2

]

Example 9:

−2 −1

a b

0 1

1.0

x(t)

2 3 4 5

↓ ↓

6 7 t

Fig. 2.9 .



Fourier Series and Fourier Transform • 107

SOLUTION :

T = 5 w0 =
2π
5

x(t) =







t +2 −2 < t <−1
1.0 −1 < t < 1
2− t 1 < t < 2

(a) (−2,0)(−1,1)

(y−1) =
−1
−1

(x+1)

y = t +2

(b) (1,1)(2,0)

y−0 =
1
−1

(x−2)

y =−x+2 =−t +2

C0 =
1
5





−1∫

−2

(t +2)dt +

1∫

−1

dt +

2∫

1

(2− t)dt





C0 =
3
5

Cn =
1
5










−1∫

−2

(t +2)e− j 2nπ
5 dt

︸ ︷︷ ︸

A

+

1∫

−1

e− j 2nπ
5 dt

︸ ︷︷ ︸

B

+

2∫

1

(2− t)e− j 2nπ
5 dt

︸ ︷︷ ︸

C










A =

−1∫

−2

e− j 2nπ
5 tdt +

−1∫

−2

2e− j 2nπ
5 tdt

A =− 1
jφ






te− jφ

−1∫

−2






+

1
φ2 e− jφ

−1∫

−2

+
2
− jφ

e j 2nπ
5

−1∫

−2

=
5

j 2nπ

(

−e j 2nπ
5 +2e j 4nπ

5

)

+
25

4n2π2

(

e j 2nπ
5 − e j 4nπ

5

)

− 10
2nπ j

A =
5

j2nπ

(

−e j 2nπ
5 +4e j 4nπ

5

)

+
25

4n2π2

(

e j 2nπ
5 − e j 4nπ

5

)

B =
e j 2nπ

5 − e− j 2nπ
5

j 2nπ
5

=
5

j 2nπ

(

e j 2nπ
5 − e− j 2nπ

5

)

C =
−10
j 2nπ

(

e− j 4nπ
5 − e− j 2nπ

5

)

+
10

j 2nπ
e− j 4nπ

5 − 5
j 2nπ

e− j 2nπ
5 − 25

4n2π2 e− j 4nπ
5 +

25
4n2π2 e j n2π

5
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Cn =
1
5

[
25

n24π2

(

e
j2nπ

5 − e
j4nπ

5

)

− 25
4n2π2

(

e−
j4nπ

5 − e−
j2nπ

5

)]

Cn =
5

2n2π2

[

cos

(
2πn
5

)

−cos

(
4πn
5

)]

Example 10: For the continuous-time periodic signal

x(t) = 2+cos

(
2π
3

t

)

+4sin

(
5π
3

t

)

Determine the fundamental frequencyw0 and the Fourier series coefficientsCn such that

x(t) =
∞

∑
n=−∞

Cne jnw0t

SOLUTION :
Given

x(t) = 2+cos

(
2π
3

t

)

+4sin

(
5π
3

t

)

The time period of the signal cos
(

2π
3 t
)

is

T1 =
2π
w1

=
2π
2π

3
= 3sec

The time period of the signal sin
(
5π

2t
)

is

T2 = 2
π

w2
=

2π
5π

3
=

6
5

sec

T1

T2
=

3
6
5

=
5
2

ratio of two integers, rational number, hence periodic.

2T1 = 5T2

The fundamental period of the signalx(t) is

T = 2T1 = 5T2 = 6sec

and the fundamental frequency is

w0 =
2π
T

=
2π
6

=
π
3

x(t) = 2+cos

(
2π
3

t

)

+4sin

(
5π
3

t

)

= 2+cos(2w0t)+4sin(5w0t)

= 2+

(
e j2w0t + e− j2w0t

)

2
+

4
(
e j5w0t − e− j5w0t

)

2 j

= 2+0.5
(
e j2w0t + e− j2w0t)−2 j

(

e j5w0t − e− j5w0t
)

x(t) = 2 je+ j(−5)w0t +0.5e+ j(−2)w0t +2+0.5e+ j2w0t −2 je+ j5w0t
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an =
2
T

π∫

−π

x(t)cosntdt =
4
T

0∫

−π

(
2t
π

+1

)

cosnt dt

=
4
2π







2t
nπ

sint +
sinnt

n
−

0∫

−π

2
π

sinnt dt







=
1
π







2t
π

sinnt +sinnt +
2

n2π
cosnt

0∫

−π







=
2
π

{

2
n2π

+
2

n2π
cosnt

}

=
4

n2π2

{

1−cosnπ
}

=
4

n2π2 (1− (−1)n)

an =

{

0 n even 2, 4, 6, 8, · · ·
8

n2π2 n odd 1, 3, 5, 7, · · ·

2.5 FOURIER TRANSFORM

2.5.1 Definition
Let x(t) be a signal which is a function of timet. The Fourier transform ofx(t) is given as

X ( jw) =

∞∫

−∞

x(t)e− jwtdt (1)

Fourier transform or

X (i f ) =

∞∫

−∞

x(t)e− j2π f tdt (2)

Sincew = 2π f
Similarly, x(t) can be recovered from its Fourier transformX( jw) by using Inverse Fourier transform

x(t) =
1
2π

∞∫

−∞

X( jw)e jwtdw (3)

x(t) =

∞∫

−∞

X(i f )e j2π f tdt (4)

Fourier transformX( jw) is the complex function of frequencyw. Therefore, it can be expressed in the
complex exponential form as follows:

X( jw) = |X( jw)|e j |X( jw)

Here|X( jw)| is the amplitude spectrum ofx(t) and |X( jw) is phase spectrum.

For a real-valued signal

(1) Amplitude spectrum is symmetric about vertical axisc (even function.)

(2) Phase spectrum is anti-symmetrical about vertical axisc (odd function.)
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2.5.2 Existence of Fourier transform (Dirichlet’s conditi on)

The following conditions should be satisfied by the signal toobtain its F.T.

(1) The functionx(t) should be single valued in any finite time intervalT .

(2) The functionx(t) should have at the most finite number of discontinuities in any finite time intervalT .

(3) The functionx(t) should have finite number of maxima and minima in any finite time intervalT .

(4) The functionx(t) should be absolutely integrable, i.e.
∞∫

−∞

|x(t)|dt < ∞

• These conditions are sufficient, but not necessary for the signal to be Fourier transformable.

• A physically realizable signal is always Fourier transformable. Thus, physical realizability is the
sufficient condition for the existence of F.T.

• All energy signals are Fourier transformable.

j
d

dw
X( jw) = FT (tx(t))

FT (tx(t)) = j
d

dw
X( jw)

Example 12: Obtain the F.T. of the signale−atu(t) and plot its magnitude and phase spectrum.

SOLUTION :
x(t) = e−atu(t)

X( f ) =

∞∫

−∞

x(t)e− j2π f tdt =

∞∫

0

e−(a+ j2π f )tdt

X( f ) =
1

a+ j 2π f

To obtain the magnitude and phase spectrum:

|X( f )|= a− j 2π f
a2 +(2π f )2 =

(
a

a2 +4π2 f 2

)

A− j

(
2π f

a2 +4π2 f 2

)

B

|X( f )|=
√

A2 +B2 =
1

√

a2 +4π2 f 2
=

1√
a2 +w2

|X( f )|= tan−1
[−2π f

a

]

=− tan−1
(w

a

)

for a = 1, |X( f )|= 1√
1+w2

,
|X( f )

=− tan−1 w

w 0 1 2 3 4 5 10 15 25 8

|X(w)| 1 .707 0.447 0.316 0.242 0.196 0.09 0.066 0.03 0

|X(w) 0 45◦ −63.4 −71.5 −75.9 −78.6 −84.2 −86.2 −87.7 −90◦
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(ii) x(t) = e−a|t| =

{
e−at t > 0
eat t > 0

e−a|t|

t

Fig. 2.13 . Graphical representation ofe−a|t|

x(w) =
1

a+ jw
+

1
a− jw

=
2a

a2 +w2

for a = 1 X(w) =
2

1+w2

|X(w)|= 2
1+w2

|X(w)
= 0

w (in radians) −∞ −10 −5 −3 −2 −1 0 1 2 3 4 5 10 ∞

|X(w)| 0 0.019 0.0769 0.2 0.4 1 2 1 0.4 0.2 .1176 0.0769 0.019 0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

2.0

0 2−2 1−1 3 4 5 . . . .. . . . 10−10 −3−4−5 w

|X(w)|

Fig. 2.14 . Magnitude plot

(iii) x(t) = e−a|t| sgn(t)

t

1.0

x(t) = e−a |t| sgn(t)

−1.0

Fig. 2.15 . Graphical representation ofe−a|t|sgn(t)
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(ii) x(t) = 1

X(w) =

∞∫

−∞

e− jwtdt = ∞

This means Dirichlet condition is not satisfied. But its F.T.can be calculated with the help of duality
property.

δ(t)
FT←→ 1

Duality property states that:x(t)
FT←→ X(w) then

X(t)
FT←→ 2πx(−w)

HereX(t) = 1, then x(−w) will be
x(t) = δ(t); X(w) = 1

thenX(t) = 1; 1
FT←→ 2πδ(−w)

We know thatδ(w) will be an even function ofw, since it is impulse function.
Hence,δ(−w) = δ(w). Then above equation becomes

1
FT←→ 2πδ(−w)

Thus, ifx(t) = 1, thenX(w) = 2πδ(w)

(iii) x(t) = sgn(t) sgn(t) =

{
1 t > 0
−1 t < 0

}

t

1

sgn(t)

−1

0

Fig. 2.17 . Graphical representation of sgn(t)

x(t) = 2u(t)−1

Differentiating both the sides
d
dt

x(t) = 2
d
dt

u(t) = 2δ(t)

Taking the F.T. of both sides

F

[
d
dt

x(t)

]

= 2F [δ(t)]

jwX(w) = 2

X(w) =
2
jw

X(w) =

∞∫

0

e− jwtdt−
0∫

−∞

e− jwtdt
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(iv) x(t) = u(t)

sgn(t) = 2u(t)−1

2u(t) = 1+sgn(t)

Taking F.T. of both sides

2F [2u(t)] = F(1)+F[sgn(t)] = 2πδ(w)+
2
jw

2u(t)
FT←→ 2πδ(w)+

2
jw

u(t)
FT←→ πδ(w)+

1
jw

Properties of unit impulse:

(1)

∞∫

−∞

x(t)δ(t) = x(0)

(2) x(t)δ(t− t0) = x(t0)δ(t− t0)

(3)

∞∫

−∞

x(t)δ(t− t0)dt = x(t0)

(4) δ(at) = 1
|a|δ(t)

(5)

∞∫

−∞

x(τ)δ(t− x)dt = x(t)

(6) δ(t) = d
dt u(t)

Example 15: Obtain the F.T. of a rectangular pulse shown in Fig. 2.18.

t0

x(t)

−T/2

1

T/2

Fig. 2.18 . Rectangular pulse

SOLUTION :

X(w) =

T
2∫

−T
2

e− jwtdt =
−1
jw

[

e− jw T
2 − e jw T

2

]

=
2
w

sin

(
wT
2

)

X(w) = T
sin
(
π wT

2π
)

π wT
2π

= sinc

(
wT
2π

)

= T
sin
(
π wT

2π
)

π wT
2π
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Sampling function or interpolating function or filtering function denoted bySa(x) or sinc(x) as shown in
figure.

sinc(x) =
sinπx

πx

(1) sinc(x) = 0 whenx =±nπ
(2) sinc(x) = 1 whenx = 0 (using L’Hospital’s rule)
(3) sinc(x) is the product of an oscillating signal sinx of period 2π and a decreasing signal1

x . Therefore,
sinc(x) is making sinusoidal of oscillations of period 2π with amplified decreasing continuously as1

x .

1.0

sin c(x)

0 2π−2π−3π−4π π−π 4π3π 5π x

Fig. 2.19 . Sine function

sincx =
sinπx

πx
; sinc(0) =

0
0

= 1 L’Hospital rule

sinc(1) =
sinπ

π
= 0; sinc(−1) = 0

sinc(2) = 0; sinc(−2) = 0

sinc(1/4) = 0.9 sinc(−1/4) = 0.9

sinc(2/4) = .6366 sinc(−0.5) = .6366

sinc(3/4) = 0.3 sinc(−7.5) = .3

sinc(1.5) =−.2122 sinc(−1.5) =−.2122

sinc(2.5) = .1273 sinc(2.5) = .1273

.1

.2

.3

.4

.5

.6

.7

.8

.9

0 .5 1 2 2.5 3 3.5.25 1.5.75−3 −2 −1 −.75 −.5 −.25−3.5 −1.5−2.5 t

Fig. 2.20 . Sine function
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Example 17: Obtain F.T. and spectrums of following signals:
(i) x(t) = cosw0t (ii) x(t) = sinw0t

SOLUTION :

(i) x(t) = cosw0t =
1
2

e jw0t +
1
2

e− jw0t

1
FT←→ 2πδ(w);

1
2

FT←→ πδ(w)

Frequency shifting property states thate jβtx(t)
FT←→ X(w−β)

1
2

e jw0t FT←→ πδ(w−w0)

1
2

e− jw0t FT←→ πδ(w+w0)

F [x(t)] = FT

{
1
2

e jw0t +
1
2

e− jw0t
}

X(w) = π [δ(w−w0)+δ(w+w0)]

| X(w) |

−w0 w0 w

π

Fig. 2.22 . Magnitude plot of cosw0t

(ii) x(t) = sinw0t

X(w) =
π
j
[δ(w−w0)−δ(w+w0)]

| X(w) |

−ω0

w0 w

π

π

Fig. 2.23 . Magnitude plot of sinw0t
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Example 18: Obtain the F.T. of

x(t) = te−atu(t)

from property of Fourier transform FT[tx(t)] = j d
dw X(w)

FT
[
e−at]=

1
a+ jw

FT(te−at) = j
d

dw

(
1

a+ jw

)

= j
(a+ jw) d

dw(1)−1 d
dw (a+ jw)

(a+ jw)2 =
1

(a+ jw)2

Inverse Fourier Transform: (IFT)

Example 19: Find the IFT of

(i) X(w) = 2 jw+1
( jw+2)2 by partial fraction expansions

(ii) X(w) = 1
(a+ jw)2 by convolution property

(iii) X(w) = e−|w|

(iv) X(w) = e−2wu(w)

SOLUTION :

(i) X(w) =
A

jw+2
+

B
( jw+2)2 ; 2 jw+1 = A( jw+2)+B A = 2 2A+B = 1 B =−3

X(w) =
2

jw+2
− 3

( jw+2)2

x(t) = 2e−2tu(t)−3te−2tu(t)

(ii) X(w) =
1

(a+ jw)2 =
1

(a+ jw)(a+ jw)
= X1(w)X2(w)

X1(w) =
1

a+ jw
, X2(w) =

1
a+ jw

x1(t) = e−atu(t), x2(t) = e−atu(t)

Using convolution property

x(t) = x1(t)
∗x2(t)

x(t)
FT←→ X(w)

x1(t)
∗x2(t)

FT←→ X1(w)X2(w)

x(t) =

∞∫

−∞

e−atu(t)e−a(t−τ)u(t− τ)dτ

{
u(τ) = 1 τ≤ 0

u(t− τ) = 1 t ≤ τ

=

t∫

0

e−atdτ = te−atu(t)
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Example 20: Find the F.T. of the function

x(t− t0) = e−(t−t0)u(t− t0)

SOLUTION :
If F [x(t)] = X(w)

then FT[x(t− t0)] = e− jwt0X(w)

F
[
e−tu(t)

]
=

1
1+ jw

F
[

e−(t−t0)u(t− t0)
]

=
e− jwt0

1+ jw

Example 21: Find the F.T. of the function

x(t) = [u(t +1)−u(t−1)]cos2πt

SOLUTION :

FT(cos2πt) = FT

(
e j2πt + e− j2πt

2

)

FT[1] = 2πδ(w)

FT[e jw0t ] = 2πδ(w−w0)

F [cos2πt] = πδ(1w−2π)+πδ(w+2π) (1)

F [u(t +1)−u(t−1)] =

1∫

−1

e− jwtdt =− 1
jw

(
e− jw− e jw)=

2sinw
w

(2)

F [x(t)] = F [{u(t +1)−u(t−1)}cos2πt]

x(t) is multiplication of (1) and (2), so by using multiplicationproperty

x(t)y(t)
FT←→ 1

2π
X1(w)∗Y1(w) =

1
2π

∞∫

−∞

X(τ)Y (w− τ)dτ

X(w) =
1
2π





∞∫

−∞

2sinτ
τ

πδ(w−2π− τ)+δ(w+2π− τ)



dτ

X(w) =

∞∫

−∞

sinτ
τ

δ(w−2π− τ)dτ+

∞∫

−∞

sinτ
τ

δ(w+2π− τ)dτ

Since

∞∫

−∞

x(t)δ(t− t0)dt = x(t0)

X(w) = sin(w−2π)/(w−2π)+sin(w+2π)/(w+2π)
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Example 22: Determine the Fourier transform of a triangular function asshown in figure.

x(t)

T

A

−T t

Fig. 2.24 . Triangular pulse

SOLUTION :

x(t)

(T,0)

(0, A)

(−T,0) t

a b→ →

Equation of line(a) is

x(t) = A
( t

T
+1
)

Equation of line(b) is

x(t) = A
(

1− t
T

)

Mathematically, we can writex(t) as

x(t) = A
( t

T
+1
)

[u(t +T )−u(t)]+A
(

1− t
T

)

[u(t)−u(t−T )]

x(t) =
A
T

(t +T )[u(t +T )−u(t)]+
A
T

(T − t)[u(t)−u(t−T )]

x(t) =
A
T

{

(t +T )u(t +T )− (t +T )u(t)
}

+
A
T

{

[(T − t)u(t)− (T − t)u(t−T )]
}

x(t) =
A
T

{

r(t +T )− tu(t)−Tu(t)
}

+
A
T

{

Tu(t)− tu(t)+ r(t−T )
}

=
A
T

{

r(t +T )− r(t)−Tu(t)
}

+
A
T

{

Tu(t)− r(t)+ r(t−T )
}

=
A
T

[{

r(t +T )−2r(t)+ r(t−T )
}]

X( jw) =
A
T

[
e jwT

( jw)2 −
2

( jw)2 +
e− jwT

( jw)2

]
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Π(t) = rect(t) =

{
1 −1

2 < t < 1
2

0 otherwise

rect(t−5) =

{
1 −1

2 ≤ t−5 < 1
2

0 otherwise

rect(t−5) =

{
1 9

2 ≤ t ≤ 11
2

0 otherwise

X( jw) =

∞∫

−∞

x(t)e− jwtdt =

∞∫

−∞

rect(t−5)e− jwtdt

=

11/2∫

9/2

e− jwtdt =
e− jwt

− jw

∣
∣
∣
∣

11/2

9/2

=
e−

j11w
2 − e−

9 jw
2

− jw
=

e−9 j w
2−e−11j w

2

jw

=
e−5 jwe jw/2− e−5 jwe− jw/2

jw
=

2e−5 jw
(
e jw/2− e− jw/2

)

w2 j

=
2e−5 jw

w
sin

w
2

= e−5 jw
(

sin w
2

w
2

)

X( jw) = e−5 jwSa

(w
2

)

2.6 PROPERTIES OF CONTINUOUS-TIME FOURIER TRANSFORM

(1) Linearity
If FT (x1(t)) = X1( jw)

and FT(x2(t)) = X2( jw)

Then linearity property states that

FT(Ax1(t)+Bx2(t)) = AX1( jw)+BX2( jw)

whereA andB are constants.

Proof:

Let r(t) = Ax1(t)+Bx2(t)

FT(r(t)) = R( jw) =

∞∫

−∞

r(t)e− jwtdt

=

∞∫

−∞

(Ax1(t)+Bx2(t))e− jwtdt
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=

∞∫

−∞

x(τ)e− j(−w)τdτ

F(x(t)) = X(− jw)

(4) Time shifting

If FT (x(t)) = X( jw)

then FT(x(t− t0)) = e− jwt0X( jw)

Proof:

Let r(t) = x(t− t0)

R( jw) =

∞∫

−∞

r(t)e− jwtdt =

∞∫

−∞

x(t− t0)e
− jwtdt

R( jw) = FT(x(t− t0)) =

∞∫

−∞

x(t− t0)e
− jwtdt

Let t− t0 = τ dt = dτ

FT (x(t− t0)) =

∞∫

−∞

x(τ)e− jw(t0+τ)dτ

=

∞∫

−∞

x(τ)e− jwte− jwt0dτ

= e− jwt0

∞∫

−∞

x(τ)e− jwτdτ

FT (x(t− t0)) = e− jwt0X( jw). Similarly, FT(x(t + t0)) = e jwt0X( jw)

So FT(x(t± t0)) = e± jwt0X( jw)

(5) Frequency shifting

If FT (x(t)) = X( jw)

FT (e jw
0

tx(t)) = X( j(w−w0))

Let r(t) = e jw
0

tx(t)

FT (r(t)) = FT
(
e jw0tx(t)

)
= R( jw) =

∞∫

−∞

e jw0tx(t)e− jwtdt

FT
(
e jw0tx(t)

)
=

∞∫

−∞

x(t)e− j(w−w0)tdt
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Let w−w0 = w′

=

∞∫

−∞

x(t)e− jw′tdt

FT
(
e jw0tx(t)

)
= X( jw′) = X( j(w−w0))

Similarly, FT(e− jw0tx(t)) = X( j(w+w0))

We can write as FT
(
e± jw0tx(t)

)
= X( j(w∓w0))

(6) Duality or symmetry property

If FT (x(t)) = X( jw)

then FT(x(t)) = 2πx(− jw)

Proof:

We know thatx(t) = 1
2π
∫ ∞
−∞ X( jw)e jwtdw

Replacingt by−t, we get

x(−t) =
1
2π

∞∫

−∞

X( jw)e− jwtdw

2π x(−t) =
2π
2π

∞∫

−∞

X( jw)e− jwtdw

2π x(−t) =

∞∫

−∞

X( jw)e− jwtdw

Interchangingt by jw

2π x(− jw) =

∞∫

−∞

X(t)e− jwtdt

2π x(− jw) = FT(X(t))

(7) Convolution in time domain

If FT (x1(t)) = X1( jw) and FT(x2(t)) = X2( jw)

then FT(x1(t)∗x2(t)) = X1( jw)X2( jw)

i.e., convolution in time domain becomes multiplication infrequency domain.
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Proof:

r(t) = x1(t)
∗x2(t) =

∞∫

−∞

x1(τ)x2(t− τ)dτ

FT(r(t)) = R( jw) =

∞∫

−∞

r(t)e− jwtdt

=

∞∫

−∞





∞∫

−∞

x1(τ)x2(t− τ)dτ



e− jwtdt

=

∞∫

−∞

∞∫

−∞

x1(τ)x2(t− τ)dτ e− jwtdt

=

∞∫

−∞

x1(τ)dτ
∞∫

−∞

x2(t− τ) e− jwtdt

Let t− τ = ∝ sodt = d ∝

FT[x1(t)
∗x2(t)] =

∞∫

−∞

x1(t)dτ
∞∫

−∞

x2(∝) e− jw(∝+τ)d ∝

=

∞∫

−∞

x1(τ)dτ
∞∫

−∞

x2(∝) e− jw∝ e− jwτd ∝

=

∞∫

−∞

x1(τ) e− jwτdτ
∞∫

−∞

x2(∝) e− jw∝d ∝

FT[x1(t)
∗x2(t)] = X1( jw) X2( jw)

(8a) Integration in time domain
If FT (x(t)) = X( jw)

then FT
(∫ t
−∞ x(τ)dτ

)
= 1

jw × ( jw)

Proof: Let r(t) =
∫ t
−∞ x(τ)dτ

Differentiating w.r.t.t
dr(t)

dt
= x(t)⇒ FT(x(t)) = FT

(
d
dt

r(t)

)

From differentiation in time domain

X( jw) = jwX( jw)

R( jw) =
1
jw

X( jw)

FT(r(t)) = FT





t∫

−∞

x(τ)dτ



=
1
jw

X( jw)
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(8b) Differentiation in time domain
If FT (x(t)) = X( jw)

then
(

d
dt x(t)

)
= jw× ( jw)

Proof: We know thatx(t) =
1
2π

∞∫

−∞

X( jw)e jwtdw. Differentiating both sides w.r.t.t

d
dt

x(t) =
1
2π

∞∫

−∞

X( jw)

(
d
dt

e jwt
)

dw

=
1
2π

∞∫

−∞

jwX( jw)e jwtdw

= j
1
2π

∞∫

−∞

(wX( jw))e jwtdw

d
dt

x(t) = j FT−1(wX( jw))

yields FT
(

d
dt x(t)

)
= jwX( jw). On generalizing we get FT

(
dn

dtn x(t)
)

= ( jw)nX( jw)

(9) Differentiation in frequency domain
If FT (x(t)) = X( jw)

then FT(tx(t)) = j d
dw X( jw)

Proof: We know thatX( jw) =
∫ ∞
−∞ x(t)e− jwtdt

On differentiating both sides w.r.t.w

d
dw

X( jw) =

∞∫

−∞

x(t)

(
d

dw
e− jwt

)

dt =−
∞∫

−∞

j t x(t)e− jwtdt

Multiplying both sides byj

j
d

dw
X( jw) =

∞∫

−∞

(tx(t))e− jwtdt since j2 =−1 or− j2 = 1

j
d

dw
X( jw) = FT[t x(t)]

FT[t x(t)] = j
d

dw
X( jw)

(10) Convolution in frequency domain (multiplication in ti me domain (multiplication theorem))

If FT(x1(t)) = X1( jw) and FT[x2(t)] = X2( jw)

FT(x1(t)x2(t)) =
1
2π

(X1( jw)∗X2( jw))
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Proof:

E =

∞∫

−∞

∣
∣
∣x(t)2

∣
∣
∣dt =

∞∫

−∞

∣
∣
∣x(t)x∗(t)dt (1)

We know thatx(t) =
1
2π

∞∫

−∞

X( jw)e+ jwtdw

Sox∗(t) =
1
2π

∞∫

−∞

X( jw)e− jwtdw (2)

on putting (1)

=

∞∫

−∞

x(t)




1
2π

∞∫

−∞

X∗( jw)e− jwtdw



dt

=
1
2π

∞∫

−∞

X∗( jw)

∞∫

−∞

x(t)e− jwtdt dw

=
1
2π

∞∫

−∞

X( jw)X∗( jw)dw

=

∞∫

−∞

∣
∣x(t)2

∣
∣dt =

1
2π

∞∫

−∞

∣
∣X( jw)

∣
∣2dw

Relation between Laplace Transform and Fourier Transform

Fourier transformX( jw) of a signalx(t) is given as

X( jw) =

∞∫

−∞

x(t)e− jwtdt (1)

F.T. can be calculated only ifx(t) is absolutely integrable

=

∞∫

−∞

∣
∣x(t)

∣
∣dt < ∞ (2)

Laplace transformX(s) of a signalx(t) is given as

X(s) =

∞∫

−∞

x(t)e−stdt (3)

We know thats = σ+ jw

X(s) =

∞∫

−∞

x(t)e−(σ+ jw)tdt

X(s) =

∞∫

−∞

[
x(t)e−σt]e− jwtdt (4)
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Comparing (1) and (4), we find that L.T. ofx(t) is basically the F.T. of[x(t)e−σt ].
If s = jw, i.e. σ = 0, then eqn. (4) becomesX(s) =

∫ ∞
−∞ x(t)e− jwtdt = X( jw)

Thus,X(s) = X( jw) whenσ = 0 or s = jw
This means L.T. is same as F.T. whens = jw. The above equation shows that F.T. is special case of L.T.

Thus, L.T. provides broader characterization compared to F.T., s = jw indicates imaginary axis in complex
s-plane.

2.7 APPLICATIONS OF FOURIER TRANSFORM OF NETWORK ANALYSIS

Example 24: Determine the voltageVout(t) to a current source excitationi(t) = e−tu(t) for the circuit shown
in figure.

1Ω Fi(t) ↑

+

Vout(t)
1

2

−

Fig. 2.26 .

SOLUTION :

1Ω Fi(t)

↓ i1(t) ↓ i2(t)

↑

+

Vout(t)
1

2

−

i(t) = i1(t)+ i2(t)

i(t) =
Vout(t)

1
+

1
2

dVout(t)
dt

{

sincei = V
R

andi = c dv
dt or v = 1

c

∫
idt

e−tu(t) = Vout(t)+
1
2

dVout(t)
dt

(1)

On taking thez-transform on both sides

1
1+ jw

= Vout( jw)

{

1+
jw
2

}

=
(2+ jw)

2
Vout( jw)

Vout( jw) =
2

(1+ jw)(2+ jw)
=

A
1+ jw

+
B

2+ jw

Vout( jw) =
2

1+ jw
− 2

2+ jw






A(2+ jw)+B(1+ jw) = 2
2A+B = 2
A+B = 0 s0 A =−B
2A−A = 2; A = 2,B =−2
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V0( jw) =
2

6( jw)2 +7( jw)+1
=

2
(6 jw+1)( jw+1)

V0( jw) =
1/3

( jw+1/6)( jw+1)
=

A
1
6 + jw

+
B

1+ jw

V0( jw) =
2

5
(

1
6 + jw

) − 2
5(1+ jw)

(5)

Taking inverse Fourier transform, we get

V0(t) =
2
5

(

e−t/6− e−t
)

u(t) (6)

Example 26: Determine the response of current in the network shown in Fig. 2.28(a) when a voltage having
the waveform shown in Fig. 2.28(b) is applied to it by using the Fourier transform.

1Ω

∼v(t) 1F

0

v(t)

π wt

(a) (b)

Fig. 2.28 .

SOLUTION :
WaveformV (t) is defined as

V (t) = sint(u(t)−u(t−π)) (1)

1Ω

∼u(t) 1F
i(t)

a

Let i(t) be the current in the loop. Applying KVL in loop

V (t) = 1· i(t)+
1
1

t∫

0

i(t)dt = i(t)+

t∫

0

i(t)dt (2)

On taking Fourier transform of

V ( jw) =
1

( jw)2 +1
+

e− jπw

( jw)2 +1

Since FT
[
sintu(t)

]
=

1
( jw)2 +1

FT
[
sintu(t−π)

]
=

e− jπw

( jw)2 +1
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Solve using F.T. formula

V ( jw) =
1+ e− jπw

( jw)2 +1
(3)

V ( jw) = I( jw)+
1
jw

I( jw)

V ( jw) =

(

1+
1
jw

)

I( jw) =
jw+1

jw
I( jw)

I( jw) =
jw

jw+1
V ( jw) (4)

I( jw) =
jw

jw+1
· (1+ e− jπw)

(( jw)2 +1)
From (3)

I( jw) =
jw

jw+1
·
{

1
( jw)2 +1

+
e− jπw

( jw)2 +1

}

=
jw

( jw+1)
· 1
(( jw)2 +1)

+
jw

( jw+1)
· 1
(( jw)2 +1)

· e− jπw

︸ ︷︷ ︸

I2( jw)I1( jw)

I1( jw) =
A

jw+1
+

B jw+ c
(( jw)2 +1)

=
−1/2

( jw+1)
+

1
2( jw+1)

(( jw)2 +1)

i1(t) =−1
2

e−tu(t)+
1
2

costut +
1
2

sintδt +
1
2

sintu(t)

Since IFT
{

1
( jw)2+1

}

= sintu(t)

so IFT
(

jw
( jw)2+1

)

= d
dt sintu(t)

Using differential in time domain property

IFT

[
jw

( jw)2 +1

]

= costu(t)+sintδ(t)

I2( jw) =
jw

( jw+1)
· 1
(( jw)2 +1)

· e− jπw

I2( jw) = I3( jw) · e− jπw

Since I3 = I1( jw)

so i3(t) =−1
2

e−tu(t)+
1
2

costu(t)+
1
2

sintδ(t)+
1
2

sintu(t)
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From time shifting property FT(x(t± t0)) = e± jwt0× ( jw)

i2(t) = i3(t−π)

=−1
2

e−(t−π)u(t−π)+
1
2

cos(t−π)u(t−π)+
1
2

sin(t−π)δ(t−π)+
1
2

sin(t−π)u(t−π)

so i(t) =
1
2
−
[
−e−t +cost +sint

]
u(t)+

1
2

sintδ(t)+
1
2

[

−e−(t−π) +cos(t−π)+sin(t−π)
]

u(t−π)+

1
2

sin(t−π)δ(t−π)

Example 27: For theRC circuit shown in figure.

R

C

i(t)

x(t) 1 y(t)

Fig. 2.29 .

(a) Determine frequency response of the circuit.

(b) Find impulse response.

(c) Plot the magnitude and phase response forRC = 1.

SOLUTION :
Applying KVL in loop (1)

x(t)−Ri(t)− 1
C

t∫

−∞

i(t)dt = 0

x(t) = Ri(t)+
1
C

t∫

−∞

i(t)dt (1)







Since

VR = iR

Vc = 1
C

∫
i(t)dt

andy(t) =
1
C

t∫

−∞

i(t)dt (2)
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A = B−C

∣
∣H( jw)

∣
∣=

1√
1+w2

(8)

H( jw) = 1− (1+ jw)

= tan−1 0
1
− tan−1 w =− tan−1 w (9)

For different values ofw, we find
∣
∣H( jw)

∣
∣ andH( jw)

S. No w |H( jw)| H( jw)

1− −∞ 0 90◦

2− −50 0.0199 88.9◦

3− −20 0.0499 87.1◦

4− −10 0.099 84.3◦

5− −5 0.196 78.7◦

6− −2 0.447 63.4◦

7− −1 0.707 45◦

8− 0 1 0

9− 1 0.707 −45◦

10− 2 0.447 −63.4◦

11− 5 0.196 −78.7◦

12− 10 0.099 −84.3◦

13− 20 0.0499 −87.1◦

14− 50 0.0199 −88.9◦

15− ∞ 0 −90◦

0 20−20 10

1

−10 30 40 50−30−40−50

| H(jw) |

w

Fig. 2.30 . Magnitude plot frequency response of the circuit
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90°

−90°

−45°

45°

0 20−20 10−10 30 40 50−30−40−50

∠H(jw)

w

Fig. 2.31 . Phase plot

Example 28: For the circuit shown in figure, determine the output voltageV0(t) to a voltage source excitation
Vi(t) = e−tu(t) using Fourier transform

2Ω

+
−

+

−
V0(t)Vin(t) 1H1

Fig. 2.32 .
SOLUTION :

SinceVin(t) = e−tu(t) (1)

Vin( jw) =
1

1+ jw
(2)

Applying KVL in loop (1)

Vin(t) = 2i(t)+1· di(t)
dt

Vin(t) = 2i(t)+
di(t)

dt
(3)

V0(t) = 1· di(t)
dt

V0(t) =
di(t)

dt
(4)
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Q3: (i) State and prove the following properties of Fourier series:
(a) Time shifting property (b) Frequency shifting property
(ii) What are Dirichlet’s conditions?

Q4: Find the fundamental periodT , the fundamental frequencyw0 and the Fourier series coefficientsan of
the following periodic signal;

0.5−0.5−1 t

x(t)

0

1

t

−1

Fig. 2.3 P .

Q5: Obtain the Fourier series component of the periodic square wave signals.

T/2T/4−T/4−T/2

x(t)

1

0 t

−1

Fig. 2.4 P .

Q6: Determine the Fourier transform of the Gate function

T/2−T/2

x(t)

A

t

Fig. 2.5 P .

Q7: Determine the Fourier series representation of the signal

x(t) =

{
t− t2 for −π≤ t ≤ π
0 elsewhere
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Q8: For the continuous-time periodic signal

x(t) = 2+cos[2π t/3]+4sin[5π t/3]

determine the fundamental frequencyw0 and the Fourier series coefficientsCn such that

x(t) =
∞

∑
n=−∞

Cne jnw0t

Q9: Find the Fourier transform of the following signals:

(a) x(t) = δ(t) (b) x(t) = 1 (c) x(t) = sgn(t) (d) x(t) = u(t)

(e) x(t) = exp(−at)u(t) (f) x(t) = cos[w0t]sin [w0t]

Q10: Show that the Fourier transform of rect(t−5) is Sa(w/2)exp( j5w). Sketch the resulting amplitude
and phase spectrum.

Q11: Find the inverse Fourier transform of spectrum shown in figure.

−w0 w0

| X(w) |
1

w
(a)

−w0

w0

∠X(w)

w

π/2

−π/2

(b)

Fig. 2.6 P .

Q12: Find the Fourier transform of the following waveform.

x(t)

0

1

a b t−a−b

Fig. 2.7 P .

Q13: State and prove duality property of CTFT.

Q14: Determine the Fourier transform of the signal
x(t) = {tu(t)∗[u(t)−u(t−1)]}, whereu(t) is unit step function and∗ denotes the convolution operation.

Q15: Show that the frequency response of a CTLTIS isY (w) = H(w)X(w)

whereX(w) = Fourier transform of the signalx(t)

H(w) = Fourier transform of LTIS responseh(t)



144 • Basic System Analysis

Q16: Find the Fourier transform of the signalx(t) shown in figure below.

A

0 T 2T t

x(t)

Fig. 2.8 P .

Q17: Determine the frequency responseH( jw) and impulse responseh(t) for a stable CTLTIS characterized
by the linear constant coefficient differential equation given as

d2y(t)/dt2 +4dy(t)/dt +3y(t) = dx(t)/dt +2x(t)

Q18: Find the Fourier transform of the signalx(t) shown in figure below.

K

0 T−T t

x(t)

Fig. 2.9 P .

Q19: If g(t) is a complex signal given byg(t) = gr(t) + jgi(t) wheregr(t) and gi(t) are the real and
imaginary parts ofg(t) respectively. IfG( f ) is the Fourier transform ofg(t), express the Fourier transform
of gr(t) andgi(t) in terms ofG( f ).

Q20: Find the coefficients of the complex exponential Fourier series for a half wave rectified sine wave
defined by

x(t) =

{
Asin (w0t), 0≤ t ≤ T0/2
0, T0/2≤ t ≤ T0

with x(t) = x(t +T0)

Q21: (a) Show that the Fourier transform of the convolution of twosignals in the time domain can be given
by the product of the Fourier transform of the individual signals in the frequency domain.

(b) Determine the Fourier transform of the signal

x(t) =
1
2

[

δ(t +1)+δ(t−1)+δ
(

t +
1
2

)

δ+

(

t− 1
2

)]



146 • Basic System Analysis

an =
1− (−1)n

n2π2

bn =
1

nπ

Q3:

0.5−0.5 1−1 t

x(t)

0

1

−1

T = 1

w0 = 2π rad/sec

y− y1 =
y2− y1

x2− x1
(x− x1)

x(t) =−2t +1

an =
2
T

t0+T∫

t0

x(t)cosnw0t dt

an = 0

Q4:

T/2T/4−T/4−T/2

x(t)
1.0

t

−1.0

T
2
−
(

−T
4

)

=
3T
4

; w0 =
2π
3T
4

=
8π
3T

x(t) =

{

1
(
−T

4 ≤ t ≤ T
4

)

−1
(

T
4 ≤ t ≤ T

2

)

a0 =
1
3T
4







T
4∫

− T
4

dt +

T
2∫

T
4

(−1)dt







=
4

3T
T
4

=
1
3
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an =
8

3T







T
4∫

− T
4

cos
8nπ
3T

dt−

T
2∫

T
4

cos
8nπ
3T

tdt







an =
1

nπ

[

3sin
2nπ
3
−sin

4nπ
3

]

bn = 0, since even function

x(t) =
1
3

+
1
π

[

3sin
2π
3
−sin

4π
3

+
3
2

sin
4π
3
− 1

2
sin

8π
3

+ · · ·
]

Q5:

T/2−T/2

x(t)

A

t

x(t) =

{

A− T
2 ≤ t ≤ T

2

0 elsewhere

X( jw) = A

T
2∫

− T
2

e− jwtdt =
2A
w

sin
wT
2

=
AT
wT
2

sin
wT
2

X(i f ) = AT sinc f T

Q6:
T0 = 2π;

w0 = 1;

a0 =
1
2π

π∫

−π

(
t− t2)dt =

−π2

3

an =
1
π

π∫

−π

(
t− t2)cosnt dt =

−4(−1)n

n2

bn =
1
π

π∫

−π

(
t− t2)sinnt dt =

−2(−1)n

n
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Taking inverse Fourier transform

x1(t) =
1
2π

w0∫

0

− j e jwtdw =
1− e jw0t

2πt

x2(t) =
1
2π

0∫

−w0

j e jwtdw =
1− e− jw0t

2πt

x(t) = x1(t)+ x2(t) =
1

2πt
(1− e jw0t +1− e− jw0t)

=
1

2πt
(2−2cosw0t) =

2sin2 w0t
2

πt

Q11:

1.0

0 a−a b−b t

x(t)

x(t) =







t+b
b−a for−b < t <−a
1 for−a < t < a
t−b
a−b for a < t < b

X( jw) =
2

w2(b−a)
(coswa−coswb)

Q12:

x(t) = tu(t)∗[u(t)−u(t−1)]

x1(t) = tu(t) x2(t) = u(t)−u(t−1)

Differentiating in frequency domain property

FT(tx(t)) = j
d

dw
X( jw)

X1( jw) =
1

( jw)2

X2( jw) =

1∫

0

1.e− jwtdt =
1
jw

(1− e− jw)

X( jw) = X1( jw)X2( jw) =
1

( jw)3 (1− e− jw)
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Q13: Prove convolution in time domain property.

Q14:

0
(0,0)

T

x(t)

A
(T,A)

2T t

x(t) =

{ A
T t 0 < t < T
A T < t < 2T

X( jw) =
A
T

T∫

0

te− jwtdt +A

2T∫

T

e− jwtdt

X( jw) =
A
T




te− jwt

− jw

T∫

0

−
T∫

0

e− jwt

jw
dt



+A

[
e− jwt

− jw

∣
∣
∣
∣

2T
T

]

=
A
T

{
Te jwt

− jw
+

1
w2

(
e− jwT −1

)
}

+A

{
e− j2wT − e− jwT

− jw

}

= A

{
e− jwt

− jw
+

1
w2T

(
e− jwT −1

)
}

− A
jw

e− jwT (e− jwT −1
)

=
Ae− jwT

jw
+

A
w2T

e− jwT − A
w2T

− A
jw

e− j 2wT +
A
jw

e− jwT

=
A

wT

(
1
w

e− jwT − 1
w

+ jTe−2 jwT
)

Q15:
d2y(t)

dt2 +4
dy(t)

dt
+3y(t) =

dx(t)
dt

+2x(t) (1)

Taking Fourier transform on both sides

( jw)2Y ( jw)+4( jw)Y ( jw)+3Y ( jw) = ( jw)X( jw)+2X( jw)

(
( jw)2 +4( jw)+3

)
Y ( jw) = (( jw)+2)X( jw) (2)

Frequency responseH( jw) =
Y ( jw)

X( jw)
=

2+ jw
( jw)2 +4 jw+3

(3)

H( jw) =
2+ jw

(3+ jw)(1+ jw)
=

A
3+ jw

+
B

1+ jw
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x(t) = Asinw0t for 0≤ t ≤ T0

2

= 0 for
T0

2
≤ t ≤ T0

C0 =
1
T0

T0
2∫

0

Asinw0tdt =
A
T0

(−cosw0t
w0

∣
∣
∣
∣

T0
2

0

)

=− A

T0 · 2π
T0

[

cosw0 ·
T0

2
−1

]

=− A
2π

[cosπ−1] =
A
2

Cn =
1
T0

T0
2∫

0

Asinw0te− jnw0tdt

=
A

2 jT0

T0
2∫

0

(e jw0t − e− jnw0t)e− jnw0tdt

=
A

2 jT0

T0
2∫

0

(

e jw0t(1−n)− e− jw0t(n+1)
)

dt

=
A

2 jT0

(

e jw0t(1−n)

jw0(1−n)
− e− jw0t(n+1)

− jw0(n+1)

∣
∣
∣
∣

T0
2

0

)

=
A

2 jT0w0

(

e jw0(1−n)
T0
2

1−n
+

e− jw0(n+1)
T0
2

(n+1)
− 1

1−n
− 1

n+1

)

=− A
4π

[

e jπ(1−n)

1−n
+

e− jπ(n+1)

n+1
− 1

1−n
− 1

n+1

]

=− A
4π

(
e jπe− jnπ

1−n
+

e− jnπ · e− jπ

n+1
− 1

1−n
− 1

n+1

)

=− A
4π

(−e− jnπ

1−n
− e− jnπ

n+1
− 1

1−n
− 1

n+1

)

Sincee jπ =−1

=
A
4π

(
2e− jnπ

1−n2 +
2

1−n2

)

=
A

2π(1−n2)
(e− jnπ +1)
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Q19:

x(t) =
1
2

(

δ(t +1)+δ(t−1)+δ
(

t +
1
2

)

+δ
(

t− 1
2

))

Taking Fourier transform on both sides

X( jw) =

∞∫

−∞

x(t)e− jwtdt (1)

X( jw) =

∞∫

−∞

1
2

(

δ(t +1)+δ(t−1)+δ
(

t +
1
2

)

+δ
(

t− 1
2

))

e− jwtdt

X( jw) =
1
2





∞∫

−∞

δ(t +1)e− jwtdt +

∞∫

−∞

δ(t−1)e− jwtdt +

∞∫

−∞

δ
(

t +
1
2

)

e− jwtdt

+

∞∫

−∞

δ
(

t− 1
2

)

e− jwtdt





Since FT(δ(t)) = 1

So FT(δ(t± t0)) = e± jwt0dt {using time shifting property}

X( jw) =
1
2

(

e jw + e− jw + e j w
2 + e− j w

2

)

X( jw) =
e jw + e− jw

2
+

e j w
2 + e− j w

2

2

X( jw) = cos w+cos
w
2

OBJECTIVE TYPE QUESTIONS

Q1: If the Fourier transform of a functionx(t) is X( jw), thenX( jw) is defined as

(a)
∫ ∞
−∞ x(t)e jwtdt (b)

∫ ∞
−∞

dx(t)
dt e− jwtdt

(c)
∫ ∞
−∞ x(t)dt (d)

∫ ∞
−∞ x(t)e− jwtdt

Q2: If X( jw) be the Fourier transform ofx(t), then
(a) x(t) = 1

2π
∫ ∞
−∞ X( jw)e jwtdw (b) x(t) = 1

2π
∫ ∞
−∞ X( jw)e− jwtdw

(c) x(t) = 1
2π
∫ ∞

0 X( jw)e jwtdw (d) x(t) = 1
2π
∫ ∞
−∞ X( jw)e− jwtdw

Q3: Fourier transform ofx(t) = 1 is
(a) 2π δ(w) (b) π δ(w) (c) 3π δ(w) (d) 4π δ(w)

Q4: Fourier transform ofx(t− t0) is
(a) e− jwt

0X( jw) (b) e jwt
0X( jw) (c) 1

t0
X( jw) (d) t0e− jwt

0X( jw)
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Q19: The trigonometric Fourier series of a periodic time function have
(a) sine terms (b) cosine term
(c) both (a) and (b) (d) DC term

Q20: Fourier series is defined as

x(t) = a◦+
∞
∑

n=1
(an cosnw0t +bn sinw0t)

(a) True (b) False
Answers: (1) d (2) a (3) a (4) a (5) b

(6) c (7) a (8) a (9) a (10) d
(11) c (12) b (13) b (14) a (15) a
(16) a (17) e (18) c (19) c (20) a

UNSOLVED PROBLEMS

Q1: Show that the Fourier transform ofx(t) = δ(t +2)+δ(t)+δ(t−2) is (1+2cos2w).

Q2: Show that the inverse Fourier transform ofX( jw) = 2πδ(w) + πδ(w− 4π) + πδ(w + 4π) is x(t) =

1+cos 4πt.

Q3: Calculate the Fourier transform ofte−|t|, using the F.T. pair, FT
[
e−|t|

]
= 2

1+w2 . Also find the Fourier

transform of 4t
(1+t2)2 using duality property.

Q4: X( jw) = δ(w)+δ(w−π)+δ(w−5); find IFT x(t) and show thatx(t) is non-periodic.

Q5: Find the Fourier transform of the triangular pulse as shown in figure.

0

1

x(t)

tT/2−T/2

Fig. 2.10 P .

Ans. X( jw) = T
2 sinc2(wt

4 )

Q6: Find the Fourier transform ofx(t) = rect(t/2). Ans. X( jw) = 2sincw

Q7: Find the Fourier transform of the signalx(t) = cosw0t by using the frequency shifting property.
Ans: X( jw) = π[δ(w−w0)+δ(w+w0)]

Q8: Show that FT[sinw0tu(t)] = w0
w2

0−w2 + π j
2 [δ(w+w0)−δ(w−w0)].

Q9: Find inverse Fourier transform ofX( jw) = jw
(1+ jw)2

Ans.x(t) = d
dt [te−tu(t)]
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Q10: Sketch and then find the Fourier transform of following signals

(a) x1(t)= π
(
t + 3

2

)
+π
(
t− 3

2

)
Ans. (a)

x1(t)

−1 1

1

2−2

−

t

X1( jw)= 2sinc w
2 cos3w

2

Fig. 2.11 P.

(b) x2(t)= π
(

t
4

)
+π
(

t
2

)
Ans. (b)

x2(t)

−1 1

1

2

2

−2

−

t

X2( jw)= 4sinc2w+2sincw

Fig. 2.12 P.

Q11: Find the frequency responsex( jw) of theRC circuit shown in figure. Plot the magnitude and phase
response forRC = 1

x( jw) =
y( jw)

x( jw)
=

1
1+ jwRC

↑ ↑
R

C y(l)x(t) −− ↑↑

Fig. 2.13 P .

Ans. |x( jw)|= 1√
1+w2

x( jw) =− tan−1 w

Q12: Find the Fourier series of the waveform shown in figure.

x(t) =
2A
jnπ

for n = 1,3,5,7
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x(tπ)t =
1
π

+
1
2

cos5πt− 2
3π

cos10

− 2
8π

cos15πt

Q15: The output of a system is given by

x(t) =

{
Asinw0t for 0≤ t ≤ π
0 for π≤ t ≤ 2π

Determine trigonometric form of Fourier series ofx(t)

Ans.

[

x(t) =
A
π

+
A
2

cos(nt− π
2
)+

∞

∑
n=2

2A
π(1−n2)

cosnt

]


